Mapping

Making maps in R

Maps can be tricky in R! There are many packages to choose from.

> usmap is compatible with ggplot

> maps is “Base R”

> Some require AP keys (e.g., ggmap, tidycensus)
> Some are interactive (e.g., leaflet)

What does a map in R look like?

Median Household Income by Census Tract

49.0°N
485°N
48.0°N
250000
475N 200000
@
3 150000
8 100000
47.0N 50000
465N
46.0°N
455N

124°W 122°W 120°W 118°W
Longitude

Data formats - boundary data

library(tidyverse)
head (map_data("county"))

long lat group order region subregion
1 -86.50517 32.34920 1 1 alabama autauga
2 -86.53382 32.35493 1 2 alabama autauga
3 -86.54527 32.36639 1 3 alabama autauga
4 -86.55673 32.37785 1 4 alabama autauga
5 -86.57966 32.38357 1 5 alabama autauga
6 -86.59111 32.37785 1 6 alabama autauga

Data formats - boundary data

> long: Longitude (x-coordinate)

lat: Latitude (y-coordinate)

group: |dentifies unique polygons (each county may have multiple polygons if it

contains islands or complex borders).

> order: Sequence in which points should be connected to form the boundary
(polygons).

> region: State name (e.g., “alabama”).

> subregion: County name within the state (e.g., “autauga”).

vy

Data formats - sf data

library (usmapdata)
head(us_map("county"))

Simple feature
Geometry type:

Dimension:
Bounding box:

Projected CRS:

A tibble: 6

o O WN -

fips

<chr>
02013
02016
02020
02050
02060
02063

abbr
<chr>
AK
AK
AK
AK
AK
AK

collection with 6 features and 4 fields
MULTIPOLYGON

Xy

xmin: -2590847 ymin: -2608148 xmax: -1298969
NAD27 / US National Atlas Equal Area

x 5

full county

<chr> <chr>

Alaska Aleutians East Borough (((-1762715
Alaska Aleutians West Census Area (((-2396847
Alaska Anchorage Municipality (((-1517576
Alaska Bethel Census Area (((-1905141
Alaska Bristol Bay Borough (((-1685825

Alaska Chugach Census Area (((-1476669

ymax: -2034041

geo

<MULTIPOLYGON [m]
-2477334, -1761280
-2547721, -2393297
-2089908, -1517636
-2137046, -1900900
-2253496, -1684030
-2101298, -1469831

Data formats - sf data

This data is “Simple Feature” (sf) data used for spatial analysis.

These objects store geometric shapes (like points, lines, or polygons) along with
associated attributes (metadata).

the geom column is a MULTIPOLYGON — a geometry type representing complex shapes,
which may consist of multiple polygons (e.g., islands or non-contiguous regions).

Federal Information Processing System (FIPS) Codes for States and Counties are
numbers which uniquely identify geographic areas. See this codebook.

https://transition.fcc.gov/oet/info/maps/census/fips/fips.txt

ggplot has spatial functions

geom_polygon() works with boundary data

Let's plot county outlines and major cities.

library(tidyverse) # ‘map_data()" from ggplot2
library(maps) # ‘us.cities’ data

wa_county <- map_data("county") %>% filter(region == "washington")
wa_cities <- us.cities 7>}, filter(country.etc == "WA")
plot_1 <-

ggplot() +

geom_polygon(data = wa_county, aes(x = long, y = lat, group = group),
color = "black", fill = NA) +

geom_point(data = wa_cities, aes(x = long, y = lat)) +

labs(title = "Washington State Cities", x = "longitude", y = "latitude") +

coord_fixed(1.3)

ggplot has spatial functions

Washington State Cities

49-

48-

latitude

IS

46-

119

121
longitude

maps package is more similar to Base R

library(maps) # ‘“map’ and “map.cities’ functions and ‘us.cities data
map('county', region = 'washington', col = "#5E610B")
map.cities(us.cities, country="WA", col = "#642EFE", cex = 2)
title(main = "Washington State Cities")

maps package is more similar to Base R

Washington State Cities

usmap is compatible with ggplot

Let's fill each county based on its population.

library(tidyverse)
library(usmap) # “countypop’ data and the “plot_usmap() function

wa_dat <- countypop %>/ filter(abbr == "WA")

plot_3 <-
plot_usmap(data = wa_dat, values = "pop_2022", include = c("WA")) +
scale_fill_continuous() +
theme (legend.position = "right")

usmap is compatible with ggplot

¢

pop_2022
2000000
1500000
1000000

500000

It can get complicated! ggplot fill by county

Sometimes a lot of cleanup is needed to join boundary data with attributes of interest!

library(tidyverse)
library(usmap) # ‘countypop data
library(maps) # ‘us.cities’ data

Get county boundaries
wa_county <- map_data("county") %>} filter(region == "washington")

Get county-level ("subregion") population

wa_dat <- countypop %>} filter(abbr == "WA") 7>J
mutate (subregion = tolower(str_remove(county, " County"))) %>%
group_by(subregion) %>’ summarize(pop_2022 = sum(pop_2022))

Combine the data
wa_complete <- wa_county %>/, inner_join(wa_dat)

Get WA cities and their coordinates
wa_cities <- us.cities %>’ filter(country.etc == "WA")

It can get complicated! ggplot fill by county

Sometimes a lot of cleanup is needed to join boundary data with attributes of interest!
Step 2: create the plot
plot_4 <-
ggplot) +
geom_polygon(data = wa_complete,
aes(x = long, y = lat, group = group, fill = pop_2022)) +

geom_point(data = wa_cities, aes(x = long, y = lat), color = "red") +
labs(

title = "Washington State Population and Cities, 2022",

x = "longitude", y = "latitude") +

coord_fixed(1.3)

can get complicated! ggplot fill by county

Washington State Population and Cities, 2022

49-

48-

latitude

47-

46~

125 123 121
longitude

119

117

pop_2022
2000000
1500000
1000000
500000

tidycensus is helpful for tract level

Use geom_sf () function with SF data.
Let's fill each census tract by median household income.

library(tidyverse) # ‘geom_sf() from ggplot2
library(tidycensus) # ‘get_acs() function for American Community Survey data

wa_income <- get_acs(
geography = "tract",
variables = "B19013_001", # Median income code
state = "WA",
year = 2022,
geometry = TRUE

tidycensus is helpful for tract level

gegplot(data = wa_income, aes(fill = estimate)) +
geom_sf ()

49.0°N-

48.5°N-
48.0°N-
estimate
250000
475N-
200000
150000
100000
47.0°N~
50000
46.5°N~
46.0°N-
455°N-

124°W 122°W 120°W 118°W

Tips for Mapping in R

1. Know the functions: make sure your data going into plotting functions is similar to
2. Data Structure: Ensure column names match between datasets for join()
operations

P> e.g., subregion needs to align in both wa_county and wa_dat to make wa_complete.
P Make sure all datasets (like counties and cities) use the same geographic system, such as
longitude-latitude pairs.

3. Clean Data to make life easier

P Use functions like tolower () and str_remove() to standardize text (e.g., removing
“County”).
P Group and summarize data when plotting aggregates, like population by county.

More resources

https://rfortherestofus.com /2024 /06 /us-maps
https://ggplot2-book.org/maps
https://walker-data.com/tidycensus/articles/spatial-data.html
https://walker-data.com/census-r/mapping-census-data-with-r.html

https://jtr13.github.io/cc19/different-ways-of - plotting-u-s-map-in-r.html

https://rfortherestofus.com/2024/06/us-maps
https://ggplot2-book.org/maps
https://walker-data.com/tidycensus/articles/spatial-data.html
https://walker-data.com/census-r/mapping-census-data-with-r.html
https://jtr13.github.io/cc19/different-ways-of-plotting-u-s-map-in-r.html

