
Statistics

Processing math: 100%

Summary

ggplot() specifies what data to use and what variables will be mapped to
where

inside ggplot(), aes(x = , y = , color =) specify what variables
correspond to what aspects of the plot in general

layers of plots can be combined using the + at the end of lines

use geom_line() and geom_point() to add lines and points

sometimes you need to add a group element to aes() if your plot looks
strange

make sure you are plotting what you think you are by checking the numbers!

facet_grid(~variable) and facet_wrap(~variable) can be helpful to
quickly split up your plot

·

·

·

·

·

·

·

/
Processing math: 100%

Summary

the factor class allows us to have a different order from alphanumeric for
categorical data

we can change data to be a factor variable using mutate(), as_factor() (in
the forcats package), or factor() functions and specifying the levels with
the levels argument

fct_reorder({variable_to_reorder}, {variable_to_order_by}) helps
us reorder a variable by the values of another variable

arranging, tabulating, and plotting the data will reflect the new order

·

·

·

·

/
Processing math: 100%

Overview

We will cover how to use R to compute some of basic statistics and fit some basic
statistical models.

Correlation

T-test

Linear Regression / Logistic Regression

·

·

·

/
Processing math: 100%

/
Processing math: 100%

Overview

We will focus on how to use R software to do these. We will be glossing over the
statistical theory and “formulas” for these tests. Moreover, we do not claim the
data we use for demonstration meet assumptions of the methods.

There are plenty of resources online for learning more about these methods.

Check out www.opencasestudies.org for deeper dives on some of the concepts
covered here and the resource page for more resources.

/
Processing math: 100%

https://www.opencasestudies.org/
https://daseh.org/resources.html

Correlation

Processing math: 100%

Correlation

The correlation coefficient is a summary statistic that measures the strength of a
linear relationship between two numeric variables.

High Low HighLowPerfect Perfect

1 0.9 0.5 0 -0.5 -0.9 -1

Positive Positive NegativeNegativeNoPositive Negative
Correlation Correlation CorrelationCorrelationCorrelationCorrelation Correlation

source

See this case study for more information.

The strength of the relationship - based on how well the points form a line

The direction of the relationship - based on if the points progress upward or
downward

·

·

/
Processing math: 100%

https://www.mathsisfun.com/data/correlation.html
https://www.opencasestudies.org/ocs-bp-co2-emissions/#Data_Analysis

Correlation

Function cor() computes correlation in R.

cor(x, y = NULL, use = c("everything", "complete.obs"),
 method = c("pearson", "kendall", "spearman"))

provide two numeric vectors of the same length (arguments x, y), or

provide a data.frame / tibble with numeric columns only

by default, Pearson correlation coefficient is computed

·

·

·

/
Processing math: 100%

Correlation test

Function cor.test() also computes correlation and tests for association.

cor.test(x, y = NULL, alternative(c("two.sided", "less", "greater")),
 method = c("pearson", "kendall", "spearman"))

provide two numeric vectors of the same length (arguments x, y), or

provide a data.frame / tibble with numeric columns only

by default, Pearson correlation coefficient is computed

alternative values:

·

·

·

·

two.sided means true correlation coefficient is not equal to zero (default)

greater means true correlation coefficient is > 0 (positive relationship)

less means true correlation coefficient is < 0 (negative relationship)

-

-

-

/
Processing math: 100%

Correlation
https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv

library(dasehr)

head(yearly_co2_emissions)

A tibble: 6 × 265
 country `1751` `1752` `1753` `1754` `1755` `1756` `1757` `1758` `1759` `176
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <db
1 Afghani… NA NA NA NA NA NA NA NA NA
2 Albania NA NA NA NA NA NA NA NA NA
3 Algeria NA NA NA NA NA NA NA NA NA
4 Andorra NA NA NA NA NA NA NA NA NA
5 Angola NA NA NA NA NA NA NA NA NA
6 Antigua… NA NA NA NA NA NA NA NA NA
ℹ 254 more variables: `1761` <dbl>, `1762` <dbl>, `1763` <dbl>, `1764` <dbl>
`1765` <dbl>, `1766` <dbl>, `1767` <dbl>, `1768` <dbl>, `1769` <dbl>,
`1770` <dbl>, `1771` <dbl>, `1772` <dbl>, `1773` <dbl>, `1774` <dbl>,
`1775` <dbl>, `1776` <dbl>, `1777` <dbl>, `1778` <dbl>, `1779` <dbl>,
`1780` <dbl>, `1781` <dbl>, `1782` <dbl>, `1783` <dbl>, `1784` <dbl>,
`1785` <dbl>, `1786` <dbl>, `1787` <dbl>, `1788` <dbl>, `1789` <dbl>,
`1790` <dbl>, `1791` <dbl>, `1792` <dbl>, `1793` <dbl>, `1794` <dbl>, …

/
Processing math: 100%

https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv

Correlation for two vectors

First, we compute correlation by providing two vectors.

Like other functions, if there are NAs, you get NA as the result. But if you specify
use only the complete observations, then it will give you correlation using the
non-missing data.

x and y must be numeric vectors
y1980 <- yearly_co2_emissions %>% pull(`1980`)
y1985 <- yearly_co2_emissions %>% pull(`1985`)

cor(y1980, y1985, use = "complete.obs")

[1] 0.9936257

/
Processing math: 100%

Correlation coefficient calculation and test

cor.test(y1980, y1985)

 Pearson's product-moment correlation

data: y1980 and y1985
t = 114.59, df = 169, p-value < 0.00000000000000022
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9913844 0.9952853
sample estimates:
 cor
0.9936257

/
Processing math: 100%

Broom package

The broom package helps make stats results look tidy

library(broom)
cor_result <- tidy(cor.test(y1980, y1985))
glimpse(cor_result)

Rows: 1
Columns: 8
$ estimate <dbl> 0.9936257
$ statistic <dbl> 114.5851
$ p.value <dbl> 0.00
$ parameter <int> 169
$ conf.low <dbl> 0.9913844
$ conf.high <dbl> 0.9952853
$ method <chr> "Pearson's product-moment correlation"
$ alternative <chr> "two.sided"

/
Processing math: 100%

Correlation for two vectors with plot

In plot form… geom_smooth() and annotate() can help.

corr_value <- pull(cor_result, estimate) %>% round(digits = 4)

cor_label <- paste0("R = ", corr_value)

yearly_co2_emissions %>%

 ggplot(aes(x = `1980`, y = `1985`)) + geom_point(size = 1) + geom_smooth() +

 annotate("text", x = 2000000, y = 4000000, label = cor_label)

/
Processing math: 100%

Correlation for data frame columns

We can compute correlation for all pairs of columns of a data frame / matrix.
This is often called, “computing a correlation matrix”.

Columns must be all numeric!

co2_subset <- yearly_co2_emissions %>%
 select(c(`1950`, `1980`, `1985`, `2010`))

head(co2_subset)

A tibble: 6 × 4
 `1950` `1980` `1985` `2010`
 <dbl> <dbl> <dbl> <dbl>
1 84.3 1760 3510 8460
2 297 5170 7880 4600
3 3790 66500 72800 119000
4 NA NA NA 517
5 187 5350 4700 29100
6 NA 143 249 524

/
Processing math: 100%

Correlation for data frame columns

We can compute correlation for all pairs of columns of a data frame / matrix.
This is often called, “computing a correlation matrix”.

cor_mat <- cor(co2_subset, use = "complete.obs")
cor_mat

 1950 1980 1985 2010
1950 1.0000000 0.9228253 0.8818288 0.5415047
1980 0.9228253 1.0000000 0.9935477 0.7270839
1985 0.8818288 0.9935477 1.0000000 0.7827256
2010 0.5415047 0.7270839 0.7827256 1.0000000

/
Processing math: 100%

Correlation for data frame columns with plot

corrplot package can make correlation matrix plots

library(corrplot)
corrplot(cor_mat)

/
Processing math: 100%

Correlation does not imply causation

source

/
Processing math: 100%

http://doi.org/10.1007/s10393-020-01472-1

T-test

Processing math: 100%

T-test

The commonly used are:

The t.test() function in R is one to address the above.

one-sample t-test – used to test mean of a variable in one group

two-sample t-test – used to test difference in means of a variable between
two groups (if the “two groups” are data of the same individuals collected at 2
time points, we say it is two-sample paired t-test)

·

·

t.test(x, y = NULL,
 alternative = c("two.sided", "less", "greater"),
 mu = 0, paired = FALSE, var.equal = FALSE,
 conf.level = 0.95, ...)

/
Processing math: 100%

Running one-sample t-test
It tests the mean of a variable in one group. By default (i.e., without us explicitly specifying values of other
arguments):

Let’s look at the CO2 emissions data again.

tests whether a mean of a variable is equal to 0 (mu = 0)

uses “two sided” alternative (alternative = "two.sided")

returns result assuming confidence level 0.95 (conf.level = 0.95)

omits NA values in data

·

·

·

·

t.test(y1980)

 One Sample t-test

data: y1980
t = 3.3324, df = 170, p-value = 0.001056
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 44745.81 174792.25
sample estimates:
mean of x
 109769

/
Processing math: 100%

Running two-sample t-test
It tests the difference in means of a variable between two groups. By default:

Check out this this case study and this case study for more information.

tests whether difference in means of a variable is equal to 0 (mu = 0)

uses “two sided” alternative (alternative = "two.sided")

returns result assuming confidence level 0.95 (conf.level = 0.95)

assumes data are not paired (paired = FALSE)

assumes true variance in the two groups is not equal (var.equal = FALSE)

omits NA values in data

·

·

·

·

·

·

/
Processing math: 100%

https://www.opencasestudies.org/ocs-bp-rural-and-urban-obesity/#Data_Analysis
https://www.opencasestudies.org/ocs-bp-diet/#Data_Analysis

Running two-sample t-test in R

t.test(y1980, y1985)

 Welch Two Sample t-test

data: y1980 and y1985
t = -0.090533, df = 341, p-value = 0.9279
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -95902.79 87462.97
sample estimates:
mean of x mean of y
 109769.0 113988.9

/
Processing math: 100%

T-test: retrieving information from the result with broom package

The broom package has a tidy() function that can organize results into a data
frame so that they are easily manipulated (or nicely printed)

result <- t.test(y1980, y1985)
result_tidy <- tidy(result)
glimpse(result_tidy)

Rows: 1
Columns: 10
$ estimate <dbl> -4219.909
$ estimate1 <dbl> 109769
$ estimate2 <dbl> 113988.9
$ statistic <dbl> -0.09053303
$ p.value <dbl> 0.9279168
$ parameter <dbl> 340.999
$ conf.low <dbl> -95902.79
$ conf.high <dbl> 87462.97
$ method <chr> "Welch Two Sample t-test"
$ alternative <chr> "two.sided"

/
Processing math: 100%

P-value adjustment
You run an increased risk of Type I errors (a “false positive”) when multiple hypotheses are tested
simultaneously.

Use the p.adjust() function on a vector of p values. Use method = to specify the adjustment method:

See here for more about multiple testing correction. Bonferroni also often done as p value threshold
divided by number of tests (0.05/test number).

my_pvalues <- c(0.049, 0.001, 0.31, 0.00001)
p.adjust(my_pvalues, method = "BH") # Benjamini Hochberg

[1] 0.06533333 0.00200000 0.31000000 0.00004000

p.adjust(my_pvalues, method = "bonferroni") # multiply by number of tests

[1] 0.19600 0.00400 1.00000 0.00004

my_pvalues * 4

[1] 0.19600 0.00400 1.24000 0.00004

/
Processing math: 100%

https://www.nature.com/articles/nbt1209-1135

Some other statistical tests

wilcox.test() – Wilcoxon signed rank test, Wilcoxon rank sum test

shapiro.test() – Shapiro test

ks.test() – Kolmogorov-Smirnov test

var.test()– Fisher’s F-Test

chisq.test() – Chi-squared test

aov() – Analysis of Variance (ANOVA)

·

·

·

·

·

·

/
Processing math: 100%

Summary

Use cor() to calculate correlation between two vectors, cor.test() can give
more information.

corrplot() is nice for a quick visualization!

t.test() one sample test to test the difference in mean of a single vector
from zero (one input)

t.test() two sample test to test the difference in means between two
vectors (two inputs)

tidy() in the broom package is useful for organizing and saving statistical test
output

Remember to adjust p-values with p.adjust() when doing multiple tests on
data

·

·

·

·

·

·

/
Processing math: 100%

Lab Part 1

 Class Website

 Lab

/
Processing math: 100%

https://daseh.org/
https://daseh.org/modules/Statistics/lab/Statistics_Lab.Rmd

Regression

Processing math: 100%

Linear regression

Linear regression is a method to model the relationship between a response and
one or more explanatory variables.

Most commonly used statistical tests are actually specialized regressions,
including the two sample t-test, see here for more.

/
Processing math: 100%

https://www.opencasestudies.org/ocs-bp-diet/#(t)-test_and_linear_regression

Linear regression notation

Here is some of the notation, so it is easier to understand the commands/results.

yi = α + βxi + εi

where:

yi is the outcome for person i

α is the intercept

β is the slope (also called a coefficient) - the mean change in y that we would
expect for one unit change in x (“rise over run”)

xi is the predictor for person i

εi is the residual variation for person i

·

·

·

·

·

/
Processing math: 100%

Linear regression

/
Processing math: 100%

Linear regression
Linear regression is a method to model the relationship between a response and one or more
explanatory variables.

We provide a little notation here so some of the commands are easier to put in the proper context.

yi = α + β1xi1 + β2xi2 + β3xi3 + εi

where:

See this case study for more details.

yi is the outcome for person i

α is the intercept

β1, β2, β2 are the slopes/coefficients for variables xi1, xi2, xi3 - average difference in y for a unit change

(or each value) in x while accounting for other variables

xi1, xi2, xi3 are the predictors for person i

εi is the residual variation for person i

·

·

·

·

·

/
Processing math: 100%

https://www.opencasestudies.org/ocs-bp-diet/#Data_Analysis

Linear regression fit in R

To fit regression models in R, we use the function glm() (Generalized Linear
Model).

You may also see lm() which is a more limited function that only allows for
normally/Gaussian distributed error terms (aka typical linear regressions).

We typically provide two arguments:

formula – model formula written using names of columns in our data

data – our data frame

·

·

/
Processing math: 100%

Linear regression fit in R: model formula

Model formula

yi = α + βxi + εi

In R translates to

y ~ x

/
Processing math: 100%

Linear regression fit in R: model formula

Model formula

yi = α + βxi + εi

In R translates to

y ~ x

In practice, y and x are replaced with the names of columns from our data set.

For example, if we want to fit a regression model where outcome is income and
predictor is years_of_education, our formula would be:

income ~ years_of_education

/
Processing math: 100%

Linear regression fit in R: model formula

Model formula

yi = α + β1xi1 + β2xi2 + β3xi3 + εi

In R translates to

y ~ x1 + x2 + x3

In practice, y and x1, x2, x3 are replaced with the names of columns from our
data set.

For example, if we want to fit a regression model where outcome is income and
predictors are years_of_education, age, and location then our formula
would be:

income ~ years_of_education + age + location

/
Processing math: 100%

Linear regression

We will use our the calenviroscreen dataset from the dasehr package to examine
how traffic estimates predict diesel particulate emissions.

/
Processing math: 100%

Linear regression: model fitting

For this model, we will use two variables:

DieselPM - estimated diesel particulate emissions from on-road and non-road
sources

TrafficPctl - percentile ranking of traffic density

·

·

fit <- glm(DieselPM ~ TrafficPctl, data = calenviroscreen)

fit

Call: glm(formula = DieselPM ~ TrafficPctl, data = calenviroscreen)

Coefficients:

(Intercept) TrafficPctl

 0.042452 0.003637

Degrees of Freedom: 7999 Total (i.e. Null); 7998 Residual

 (35 observations deleted due to missingness)

Null Deviance: 537.2

Residual Deviance: 449.1 AIC: -330.9

/
Processing math: 100%

Linear regression: model summary

The summary() function returns a list that shows us some more detail

summary(fit)

Call:
glm(formula = DieselPM ~ TrafficPctl, data = calenviroscreen)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04245151 0.00529915 8.011 0.0000000000000013 ***
TrafficPctl 0.00363651 0.00009177 39.625 < 0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.05614936)

 Null deviance: 537.24 on 7999 degrees of freedom
Residual deviance: 449.08 on 7998 degrees of freedom
 (35 observations deleted due to missingness)
AIC: -330.9

Number of Fisher Scoring iterations: 2

/
Processing math: 100%

tidy results

The broom package can help us here too!

The estimate is the coefficient or slope.

for one change in the traffic percentile, we see 0.003637 more Diesel particulate
emissions. The error for this estimate is relatively small at 0.00009. This
relationship appears to be significant with a small p value < 2e-16.

tidy(fit) %>% glimpse()

Rows: 2
Columns: 5
$ term <chr> "(Intercept)", "TrafficPctl"
$ estimate <dbl> 0.042451513, 0.003636512
$ std.error <dbl> 0.00529915058, 0.00009177366
$ statistic <dbl> 8.011003, 39.624789
$ p.value <dbl> 0.0000000000000012983396857238743156732797112774494962140342

/
Processing math: 100%

Linear regression: multiple predictors
Let’s try adding another explanatory variable to our model, amount of daily Ozone concentration (Ozone).
Ozone is usually inversely related to particulate measures.

fit2 <- glm(DieselPM ~ TrafficPctl + Ozone, data = calenviroscreen)
summary(fit2)

Call:
glm(formula = DieselPM ~ TrafficPctl + Ozone, data = calenviroscreen)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.23025068 0.01347754 17.08 <0.0000000000000002 ***
TrafficPctl 0.00355094 0.00009067 39.16 <0.0000000000000002 ***
Ozone -3.77418894 0.24967138 -15.12 <0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.0545963)

 Null deviance: 537.24 on 7999 degrees of freedom
Residual deviance: 436.61 on 7997 degrees of freedom
 (35 observations deleted due to missingness)
AIC: -554.3

Number of Fisher Scoring iterations: 2

/
Processing math: 100%

Linear regression: multiple predictors

Can also use tidy and glimpse to see the output nicely.

fit2 %>%
 tidy() %>%
 glimpse()

Rows: 3
Columns: 5
$ term <chr> "(Intercept)", "TrafficPctl", "Ozone"
$ estimate <dbl> 0.23025068, 0.00355094, -3.77418894
$ std.error <dbl> 0.01347753532, 0.00009067243, 0.24967137612
$ statistic <dbl> 17.08403, 39.16229, -15.11663
$ p.value <dbl> 0.00

/
Processing math: 100%

Linear regression: factors

Factors get special treatment in regression models - lowest level of the factor is
the comparison group, and all other factors are relative to its values.

Let’s create a variable that tells us whether a census tract has a high, middle, or
low percentage of the population below the poverty line.

calenviroscreen <- calenviroscreen %>% mutate(
 PovertyPctl_level = case_when(
 PovertyPctl > 0.75 ~ "high",
 PovertyPctl > 0.25 & PovertyPctl <= 0.75 ~ "middle",
 PovertyPctl <= 0.25 ~ "low",
 TRUE ~ NA
)
)

/
Processing math: 100%

Linear regression: factors
The comparison group that is not listed is treated as intercept. All other estimates are relative to the
intercept.

fit3 <- glm(DieselPM ~ TrafficPctl + Ozone + factor(PovertyPctl_level), data = calenviroscreen)
summary(fit3)

Call:
glm(formula = DieselPM ~ TrafficPctl + Ozone + factor(PovertyPctl_level),
 data = calenviroscreen)

Coefficients:
 Estimate Std. Error t value
(Intercept) 0.22893847 0.01343002 17.047
TrafficPctl 0.00353551 0.00009034 39.137
Ozone -3.73294307 0.24881820 -15.003
factor(PovertyPctl_level)low -0.09685048 0.05463573 -1.773
factor(PovertyPctl_level)middle -0.11329720 0.03672457 -3.085
 Pr(>|t|)
(Intercept) < 0.0000000000000002 ***
TrafficPctl < 0.0000000000000002 ***
Ozone < 0.0000000000000002 ***
factor(PovertyPctl_level)low 0.07632 .
factor(PovertyPctl_level)middle 0.00204 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.05357268)

 Null deviance: 523.61 on 7933 degrees of freedom
Residual deviance: 424.78 on 7929 degrees of freedom
 (101 observations deleted due to missingness)
AIC: -697.85

Number of Fisher Scoring iterations: 2
/

Processing math: 100%

Linear regression: factors
Relative to the level is not listed.

calenviroscreen <-
 calenviroscreen %>%
 mutate(PovertyPctl_level = factor(
 PovertyPctl_level,
 levels = c("low", "middle", "high")
))
fit4 <- glm(DieselPM ~ TrafficPctl + Ozone + PovertyPctl_level, data = calenviroscreen)
summary(fit4)

Call:
glm(formula = DieselPM ~ TrafficPctl + Ozone + PovertyPctl_level,
 data = calenviroscreen)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.13208799 0.05585244 2.365 0.0181 *
TrafficPctl 0.00353551 0.00009034 39.137 <0.0000000000000002 ***
Ozone -3.73294307 0.24881820 -15.003 <0.0000000000000002 ***
PovertyPctl_levelmiddle -0.01644672 0.06569819 -0.250 0.8023
PovertyPctl_levelhigh 0.09685048 0.05463573 1.773 0.0763 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.05357268)

 Null deviance: 523.61 on 7933 degrees of freedom
Residual deviance: 424.78 on 7929 degrees of freedom
 (101 observations deleted due to missingness)
AIC: -697.85

Number of Fisher Scoring iterations: 2

/
Processing math: 100%

Linear regression: factors
You can view estimates for the comparison group by removing the intercept in the GLM formula

y ~ x - 1

Caveat is that the p-values change.

fit5 <- glm(DieselPM ~ TrafficPctl + Ozone + PovertyPctl_level - 1, data = calenviroscreen)
summary(fit5)

Call:
glm(formula = DieselPM ~ TrafficPctl + Ozone + PovertyPctl_level -
 1, data = calenviroscreen)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
TrafficPctl 0.00353551 0.00009034 39.137 <0.0000000000000002 ***
Ozone -3.73294307 0.24881820 -15.003 <0.0000000000000002 ***
PovertyPctl_levellow 0.13208799 0.05585244 2.365 0.0181 *
PovertyPctl_levelmiddle 0.11564127 0.03838198 3.013 0.0026 **
PovertyPctl_levelhigh 0.22893847 0.01343002 17.047 <0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.05357268)

 Null deviance: 919.65 on 7934 degrees of freedom
Residual deviance: 424.78 on 7929 degrees of freedom
 (101 observations deleted due to missingness)
AIC: -697.85

Number of Fisher Scoring iterations: 2

/
Processing math: 100%

Linear regression: interactions
You can also specify interactions between variables in a formula y ~ x1 + x2 + x1 * x2. This allows
for not only the intercepts between factors to differ, but also the slopes with regard to the interacting
variable.

fit6 <- glm(
 DieselPM ~ TrafficPctl + Ozone + PovertyPctl_level + TrafficPctl * PovertyPctl_level,
 data = calenviroscreen
)
tidy(fit6)

A tibble: 7 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.200 0.113 1.77 7.62e- 2
2 TrafficPctl 0.00224 0.00186 1.21 2.28e- 1
3 Ozone -3.72 0.249 -14.9 7.90e-50
4 PovertyPctl_levelmiddle 0.00335 0.131 0.0256 9.80e- 1
5 PovertyPctl_levelhigh 0.0280 0.112 0.249 8.03e- 1
6 TrafficPctl:PovertyPctl_levelmiddle -0.000721 0.00227 -0.317 7.51e- 1
7 TrafficPctl:PovertyPctl_levelhigh 0.00131 0.00186 0.702 4.83e- 1

/
Processing math: 100%

Linear regression: interactions
By default, ggplot with a factor added as a color will look include the interaction term. Notice the
different intercept and slope of the lines.

ggplot(calenviroscreen, aes(x = DieselPM, y = TrafficPctl, color = PovertyPctl_level)) +
 geom_point(size = 1, alpha = 0.1) +
 geom_smooth(method = "glm", se = FALSE) +
 scale_color_manual(values = c("black", "grey45", "grey65", "grey85")) +
 theme_classic() +
 ylim(0,100) +
 xlim(0, 3)

/
Processing math: 100%

Generalized linear models (GLMs)

Generalized linear models (GLMs) allow for fitting regressions for non-
continuous/normal outcomes. Examples include: logistic regression, Poisson
regression.

Add the family argument – a description of the error distribution and link
function to be used in the model. These include:

Very important to use the right test!

See this case study for more information.

See ?family documentation for details of family functions.

binomial(link = "logit") - outcome is binary

poisson(link = "log") - outcome is count or rate

others

·

·

·

/
Processing math: 100%

https://www.opencasestudies.org/ocs-bp-vaping-case-study/#Data_Analysis

Logistic regression
Let’s look at a logistic regression example. We’ll use the calenviroscreen dataset again. We will create a
new binary variable based on the DieselPM percentile variable, so we can tell whether a census tract has
high or low DieselPM emissions compared to the others.

calenviroscreen <-
 calenviroscreen %>%
 mutate(
 DieselPM_level = case_when
 (DieselPMPctl > 0.75 ~ 1,
 DieselPMPctl <= 0.75 ~ 0))

/
Processing math: 100%

Logistic regression
Now that we’ve created the DieselPM_level variable (where a 1 indicates the census tract is one of the
top 75% when it comes to dieselPM emissions), we can run a logistic regression.

Let’s explore how PovertyPctl_level might predict DieselPM_level.

General format
glm(y ~ x, data = DATASET_NAME, family = binomial(link = "logit"))

binom_fit <- glm(DieselPM_level ~ PovertyPctl_level, data = calenviroscreen, family = binomial(link = "logit"))
summary(binom_fit)

Call:
glm(formula = DieselPM_level ~ PovertyPctl_level, family = binomial(link = "logit"),
 data = calenviroscreen)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 17.56606843873 932.48063065847 0.019 0.985
PovertyPctl_levelmiddle 0.00000004734 1118.59764091255 0.000 1.000
PovertyPctl_levelhigh -12.62378846430 932.48064030187 -0.014 0.989

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 666.77 on 7959 degrees of freedom
Residual deviance: 665.93 on 7957 degrees of freedom
 (75 observations deleted due to missingness)
AIC: 671.93

Number of Fisher Scoring iterations: 16

/
Processing math: 100%

Logistic Regression

See this case study for more information.

/
Processing math: 100%

https://www.opencasestudies.org/ocs-bp-vaping-case-study/#Logistic_regression_%E2%80%9Cby_hand%E2%80%9D_and_by_model

Odds ratios

An odds ratio (OR) is a measure of association between an exposure and an
outcome. The OR represents the odds that an outcome will occur given a
particular exposure, compared to the odds of the outcome occurring in the
absence of that exposure.

Check out this paper.

/
Processing math: 100%

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938757/

Odds ratios
Use oddsratio(x, y) from the epitools() package to calculate odds ratios.

In this case, we’re calculating the odds ratio for whether living in a high traffic area predicts high levels of
DieselPM.

library(epitools)

calenviroscreen <-
 calenviroscreen %>%
 mutate(
 Traffic_level = case_when
 (TrafficPctl > 0.75 ~ 1,
 TrafficPctl <= 0.75 ~ 0))

response <- calenviroscreen %>% pull(DieselPM_level)
predictor <- calenviroscreen %>% pull(Traffic_level)

/
Processing math: 100%

Odds ratios
Use oddsratio(x, y) from the epitools() package to calculate odds ratios.

In this case, we’re calculating the odds ratio for whether living in a high traffic area predicts high levels of
DieselPM.

oddsratio(predictor, response)

$data
 Outcome
Predictor 0 1 Total
 0 23 37 60
 1 35 7905 7940
 Total 58 7942 8000

$measure
 odds ratio with 95% C.I.
Predictor estimate lower upper
 0 1.0000 NA NA
 1 139.3968 74.58837 260.5596

$p.value
 two-sided
Predictor midp.exact fisher.exact
 0 NA NA
 1 0 0.000000000000000000000000000000000007956334
 two-sided
Predictor
 0
 1 0.00

$correction
[1] FALSE

attr(,"method")
[1] "median-unbiased estimate & mid-p exact CI"

/
Processing math: 100%

Final note

Some final notes:

Researcher’s responsibility to understand the statistical method they use –
underlying assumptions, correct interpretation of method results

Researcher’s responsibility to understand the R software they use – meaning
of function’s arguments and meaning of function’s output elements

·

·

/
Processing math: 100%

Summary

glm() fits regression models:

oddsratio() from the epitools package can calculate odds ratios (outside of
logistic regression - which allows more than one explanatory variable)

this is just the tip of the iceberg!

·

Use the formula = argument to specify the model (e.g., y ~ x or y ~ x1
+ x2 using column names)

Use data = to indicate the dataset

Use family = to do a other regressions like logistic, Poisson and more

summary() gives useful statistics

-

-

-

-

·

·

/
Processing math: 100%

Resources (also on the website!)

For more check out:

Content for similar topics as this course can also be found on Leanpub.

this chapter on modeling in this tidyverse book

this chart on when to do what test

opencasestudies.org

·

·

·

/
Processing math: 100%

https://daseh.org/resources.html
https://jhudatascience.org/tidyversecourse/model.html#linear-modeling
https://www.scribbr.com/statistics/statistical-tests/

Lab Part 2

 Class Website

 Lab

Image by Gerd Altmann from Pixabay

/
Processing math: 100%

https://daseh.org/
https://daseh.org/modules/Statistics/lab/Statistics_Lab.Rmd
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

