Statistics

Environmental
Health

Summary

- ggplot () specifies what data to use and what variables will be mapped to
where

- inside ggplot(),aes(x = , y =, color =) specify what variables
correspond to what aspects of the plot in general

- layers of plots can be combined using the + at the end of lines
+ use geom_line() and geom_point () to add lines and points

-+ sometimes you need to add a group element to aes () if your plot looks
strange

-+ make sure you are plotting what you think you are by checking the numbers!

- facet_grid(~variable) and facet_wrap(~variable) can be helpful to
quickly split up your plot

Processing math: 100%

Summary

- the factor class allows us to have a different order from alphanumeric for
categorical data

-+ we can change data to be a factor variable using mutate(), as_factor () (in
the forcats package), or factor () functions and specifying the levels with
the levels argument

+ fct_reorder({variable_to_reorder}, {variable_to_order_by}) helps
us reorder a variable by the values of another variable

- arranging, tabulating, and plotting the data will reflect the new order

Processing math: 100%

Overview

We will cover how to use R to compute some of basic statistics and fit some basic
statistical models.

Correlation
- T-test

Linear Regression / Logistic Regression

Processing math: 100%

Processing math: 100%

“It was my understanding
there would he no math”

iy

Overview

We will focus on how to use R software to do these. We will be glossing over the
statistical theory and “formulas” for these tests. Moreover, we do not claim the
data we use for demonstration meet assumptions of the methods.

There are plenty of resources online for learning more about these methods.

Check out www.opencasestudies.org for deeper dives on some of the concepts
covered here and the resource page for more resources.

Processing math: 100%

https://www.opencasestudies.org/
https://daseh.org/resources.html

Correlation

Correlation

The correlation coefficient is a summary statistic that measures the strength of a
linear relationship between two numeric variables.

The strength of the relationship - based on how well the points form a line

The direction of the relationship - based on if the points progress upward or

downward
Perfect High Low Low High Perfect
Positive Positive Positive No Negative Negative Negative
Correlation Correlation Correlation Correlation Correlation Correlation Correlation
Oq,o
1 0.9 0.5 0 -0.5 -0.9 -1
source

See this case study for more information.

Processing math: 100%

https://www.mathsisfun.com/data/correlation.html
https://www.opencasestudies.org/ocs-bp-co2-emissions/#Data_Analysis

Correlation

Function cor () computes correlation in R.

cor(x, y = NULL, use = c("everything", '"complete.obs"),
method = c("pearson", "kendall", "spearman"))

provide two numeric vectors of the same length (arguments x, y), or

provide a data.frame / tibble with numeric columns only

by default, Pearson correlation coefficient is computed

Processing math: 100%

Correlation test

Function cor.test() also computes correlation and tests for association.

cor.test(x, y = NULL, alternative(c("two.sided", "less", "greater")),
method = c("pearson", "kendall", "spearman"))

provide two numeric vectors of the same length (arguments x, y), or

provide a data.frame / tibble with numeric columns only
by default, Pearson correlation coefficient is computed
- alternative values:
- two.sided means true correlation coefficient is not equal to zero (default)
- greater means true correlation coefficient is > 0 (positive relationship)

- less means true correlation coefficient is < 0 (negative relationship)

Processing math: 100%

Correlation

https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv

library(dasehr)

head(yearly_co2_emissions)

A tibble: 6 x 265
country 1751 1752 1753 1754 1755 "1756° 1757 1758 1759 " 17¢
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dt

1 Afghani.. NA NA NA NA NA NA NA NA NA

2 Albania NA NA NA NA NA NA NA NA NA

3 Algeria NA NA NA NA NA NA NA NA NA

4 Andorra NA NA NA NA NA NA NA NA NA

5 Angola NA NA NA NA NA NA NA NA NA

6 Antlguau NA NA NA NA NA NA NA NA NA

i 254 more variables: 1761 <dbl>, "1762° <dbl>, "1763° <dbl>, 1764 <dbl>

1765 <dbl>, 1766 <dbl>, 1767 <dbl>, "1768" <dbl>, "1769° <dbl>,

"1770° <dbl>, "1771° <dbl>, "1772° <dbl>, "1773° <dbl>, 1774 <dbl>,

1775 <dbl>, 1776 <dbl>, 1777 <dbl>, 1778 <dbl>, "1779° <dbl>,

"1780° <dbl>, 1781 <dbl>, 1782 <dbl>, 1783 <dbl>, 1784 <dbl>,

1785 <dbl>, 1786 <dbl>, 1787 <dbl>, 1788 <dbl>, 1789 <dbl>,

"1790° <dbl>, 1791 <dbl>, 1792 <dbl>, 1793 <dbl>, 1794 <dbl>,

Processing math: 100%

https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv

Correlation for two vectors

First, we compute correlation by providing two vectors.

x and y must be numeric vectors
y1980 <- yearly co2_emissions %>% pull(1980)
y1985 <- yearly co2_emissions %>% pull(1985")

Like other functions, if there are NAs, you get NA as the result. But if you specify

use only the complete observations, then it will give you correlation using the
non-missing data.

cor(y1980, y1985, use = '"complete.obs")

[1] 0.9936257

Processing math: 100%

Correlation coefficient calculation and test
cor.test(y1980, y1985)

Pearson's product-moment correlation

data: y1980 and y1985
t = 114.59, df = 169, p-value < 0.00000000000000022
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.9913844 0.9952853
sample estimates:
cor
0.9936257

Processing math: 100%

Broom package

The broom package helps make stats results look tidy

library(broom)

cor_result <- tidy(cor.test(y1980, y1985))
glimpse(cor_result)

Rows: 1

Columns: 8

$ estimate <dbl>
$ statistic <dbl>
$ p.value <dbl>
$ parameter <int>
$ conf.low <dbl>
$ conf.high <dbl>
$ method <chr>
$ alternative <chr>

Processing math: 100%

0.9936257

114 .5851
0.00000000000000000000000COOCEOEEEOEEEOEEOOBEEOBEEOEEOOAMNC
169

0.9913844

0.9952853

"Pearson's product-moment correlation"

"two.sided"

Correlation for two vectors with plot

In plot form... geom_smooth() and annotate() can help.

corr_value <- pull(cor_result, estimate) %% round(digits = 4)

cor_label <- paste@("R =", corr_value)

yearly co2_emissions %>%
ggplot(aes(x = "1980°, y = "1985°)) + geom_point(size = 1) + geom_smooth() +
annotate("text", x = 2000000, y = 4000000, label = cor_label)

4000000 - R =0.9936

3000000 -

1985

2000000 -

1000000 -

0 1000000 2000000 3000000 4000000
1980

Processing math: 100%

Correlation for data frame columns

We can compute correlation for all pairs of columns of a data frame / matrix.
This is often called, “computing a correlation matrix”.

Columns must be all numeric!

co2_subset <- yearly co2_emissions %>%
select(c(1950°, '1980°, "1985 , 2010))

head(co2_subset)

A tibble: 6 x 4
"1950° 1980 1985 2010
<dbl> <dbl> <dbl> <dbl>
1 84.3 1760 3510 8460

2 297 5170 7880 4600
3 3790 66500 72800 119000
4 NA NA NA 517
5 187 5350 4700 29100
6 NA 143 249 524

Processing math: 100%

Correlation for data frame columns

We can compute correlation for all pairs of columns of a data frame / matrix.
This is often called, “computing a correlation matrix”.

cor_mat <- cor(co2_subset, use = "complete.obs")
cor_mat

1950 1980 1985 2010
1950 1.0000000 0.9228253 0.8818288 0.5415047
1980 0.9228253 1.0000000 0.9935477 0.7270839
1985 0.8818288 0.9935477 1.0000000 0.7827256
2010 0.5415047 0.7270839 0.7827256 1.0000000

Processing math: 100%

Correlation for data frame columns with plot

corrplot package can make correlation matrix plots

library(corrplot)
corrplot(cor_mat)

r0.4

1980 s
ro0

0.6

2010 . 0s
1

1950
1980
1985

2010

0.2

0.4

Processing math: 100%

Correlation does not imply causation

Lyme disease incidence Number of fried chicken restaurants (chain A)

L

0 0
0-1 1-10
1-5 11-40
5-20 41-80
20-108 81-271

[7)]

(]

S %O RA2=0.17, p=0.015

-q- — = . = .

;-; - @ O o 1p

@ O 0

8 o 0

A O 4

()]

£ o O S L;® o © O O

[| [[[[
- 0 50 100 150 200 250

Number of Fried Chicken-A Restaurants

source

Processing math: 100%

http://doi.org/10.1007/s10393-020-01472-1

T-test

Processing math: 100%

T-test

The commonly used are:

- one-sample t-test - used to test mean of a variable in one group

- two-sample t-test - used to test difference in means of a variable between
two groups (if the “two groups” are data of the same individuals collected at 2
time points, we say it is two-sample paired t-test)

The t.test() function in R is one to address the above.

t.test(x, y = NULL,
alternative = c("two.sided", "less'", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

Processing math: 100%

Running one-sample t-test

It tests the mean of a variable in one group. By default (i.e., without us explicitly specifying values of other
arguments):

tests whether a mean of a variable is equal to O (mu = 0)
uses “two sided” alternative (alternative = "two.sided")
returns result assuming confidence level 0.95 (conf.level = 0.95)

omits NA values in data
Let's look at the CO2 emissions data again.
t.test(y1980)

One Sample t-test

data: y1980
t = 3.3324, df = 170, p-value = 0.001056
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
44745.81 174792.25

sample estimates:
mean of x

109769

Processing math: 100%

Running two-sample t-test
It tests the difference in means of a variable between two groups. By default:

- tests whether difference in means of a variable is equal to 0 (mu = 0)
- uses “two sided” alternative (alternative = "two.sided")

returns result assuming confidence level 0.95 (conf.level = 0.95)
+assumes data are not paired (paired = FALSE)

+assumes true variance in the two groups is not equal (var.equal = FALSE)

- omits NA values in data

Check out this this case study and this case study for more information.

Processing math: 100%

https://www.opencasestudies.org/ocs-bp-rural-and-urban-obesity/#Data_Analysis
https://www.opencasestudies.org/ocs-bp-diet/#Data_Analysis

Running two-sample t-testin R
t.test(y1980, y1985)

Welch Two Sample t-test

data: y1980 and y1985
t = -0.090533, df = 341, p-value = 0.9279
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-95902.79 87462.97
sample estimates:
mean of X mean of y
109769.0 113988.9

Processing math: 100%

T-test: retrieving information from the result with broom package

The broom package has a tidy() function that can organize results into a data
frame so that they are easily manipulated (or nicely printed)

result <- t.test(y1980, y1985)
result_tidy <- tidy(result)
glimpse(result_tidy)

Rows: 1

Columns: 10

$ estimate <dbl> -4219.909

$ estimatel <dbl> 109769

$ estimate2 <dbl> 113988.9

$ statistic <dbl> -0.09053303
$ p.value <dbl> 0.9279168

$ parameter <dbl> 340.999

$ conf.low <dbl> -95902.79

$ conf.high <dbl> 87462.97

$ method <chr> "Welch Two Sample t-test"
$ alternative <chr> "two.sided"

Processing math: 100%

P-value adjustment

You run an increased risk of Type | errors (a “false positive”) when multiple hypotheses are tested
simultaneously.

Use the p.adjust () function on a vector of p values. Use method = to specify the adjustment method:

my_pvalues <- c(0.049, 0.001, 0.31, 0.00001)
p.adjust(my_pvalues, method = "BH") # Benjamini Hochberg

[1] ©0.06533333 0.00200000 0.31000000 0.00004000

p.adjust(my_pvalues, method = "bonferroni") # multiply by number of tests
[1] ©0.19600 0.00400 1.00000 0.00004

my_pvalues * 4

[1] 0.19600 0.00400 1.24000 0.00004

See here for more about multiple testing correction. Bonferroni also often done as p value threshold
divided by number of tests (0.05/test number).

Processing math: 100%

https://www.nature.com/articles/nbt1209-1135

Some other statistical tests
- wilcox.test() - Wilcoxon signed rank test, Wilcoxon rank sum test
+ shapiro.test() - Shapiro test
ks.test() - Kolmogorov-Smirnov test
- var.test()- Fisher’s F-Test
+ chisqg.test() - Chi-squared test
- aov() - Analysis of Variance (ANOVA)

Processing math: 100%

Summary
Use cor () to calculate correlation between two vectors, cor.test () can give
more information.

corrplot() is nice for a quick visualization!

t.test() one sample test to test the difference in mean of a single vector
from zero (one input)

t.test() two sample test to test the difference in means between two
vectors (two inputs)

tidy() in the broom package is useful for organizing and saving statistical test
output

Remember to adjust p-values with p.adjust () when doing multiple tests on
data

Processing math: 100%

Lab Part 1
Class Website

Lab

Processing math: 100%

https://daseh.org/
https://daseh.org/modules/Statistics/lab/Statistics_Lab.Rmd

Regression

Linear regression

Linear regression is a method to model the relationship between a response and
one or more explanatory variables.

Most commonly used statistical tests are actually specialized regressions,
including the two sample t-test, see here for more.,

Processing math: 100%

https://www.opencasestudies.org/ocs-bp-diet/#(t)-test_and_linear_regression

Linear regression notation

Here is some of the notation, so it is easier to understand the commands/results.
Y=o+ Bx; + g

where;

- y; is the outcome for person i
- «ais the intercept

- Bis the slope (also called a coefficient) - the mean change in y that we would
expect for one unit change in x (“rise over run”)

+ x; is the predictor for person i

- &, is the residual variation for person i

/
Processing math: 100%

Linear regression

Processing math: 100%

Linear regression

Linear regression is a method to model the relationship between a response and one or more
explanatory variables.

We provide a little notation here so some of the commands are easier to put in the proper context.

Vi = o+ Bixy + Boxpp t Baxiz tg;

where:

+ y; is the outcome for person i

- ais the intercept
* By By B, are the slopes/coefficients for variables x,,, x,,, x;5 - average difference iny for a unit change

(or each value) in x while accounting for other variables

" Xj1, Xjp Xj3 are the predictors for person i

- g, is the residual variation for person i

See this case study for more details.

Processing math: 100%

https://www.opencasestudies.org/ocs-bp-diet/#Data_Analysis

Linear regression fitin R

To fit regression models in R, we use the function glm() (Generalized Linear
Model).

You may also see 1m() which is a more limited function that only allows for
normally/Gaussian distributed error terms (aka typical linear regressions).

We typically provide two arguments:

- formula - model formula written using names of columns in our data

data - our data frame

Processing math: 100%

Linear regression fit in R: model formula

Model formula

yi = atpx;te

In R translates to

Processing math: 100%

Linear regression fit in R: model formula

Model formula
yi=atpx;te
In R translates to
y ~ X
In practice, y and x are replaced with the names of columns from our data set.

For example, if we want to fit a regression model where outcome is income and
predictor is years_of_education, our formula would be:

income ~ years_of_education

Processing math: 100%

Linear regression fit in R: model formula

Model formula
Yi = a BiXy + BoXpy + Baxin t g
In R translates to
y ~ X1 + X2 + X3

In practice, y and x1, x2, x3 are replaced with the names of columns from our
data set.

For example, if we want to fit a regression model where outcome is income and
predictors are years_of_education, age, and location then our formula
would be:

income ~ years_of_education + age + location

Processing math: 100%

Linear regression

We will use our the calenviroscreen dataset from the dasehr package to examine
how traffic estimates predict diesel particulate emissions.

Processing math: 100%

Linear regression: model fitting

For this model, we will use two variables:

DieselPM - estimated diesel particulate emissions from on-road and non-road
sources

TrafficPctl - percentile ranking of traffic density

fit <- glm(DieselPM ~ TrafficPctl, data = calenviroscreen)
fit

Call: glm(formula = DieselPM ~ TrafficPctl, data = calenviroscreen)

Coefficients:
(Intercept) TrafficPctl
0.042452 0.003637

Degrees of Freedom: 7999 Total (i.e. Null); 7998 Residual
(35 observations deleted due to missingness)

Null Deviance: 537.2

Residual Deviance: 449.1 AIC: -330.9

Processing math: 100%

Linear regression: model summary

The summary () function returns a list that shows us some more detail

summary(fit)

Call:
glm(formula = DieselPM ~ TrafficPctl, data = calenviroscreen)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.04245151 0.00529915 8.011 0.0000000000000013 ***
TrafficPctl 0.00363651 0.00009177 39.625 < 0.0000000000000002 ***

Signif. codes: 0 '***' @.001 '**' 0.01 '*' 0.05 '." 0.2 " ' 1
(Dispersion parameter for gaussian family taken to be 0.05614936)
Null deviance: 537.24 on 7999 degrees of freedom
Residual deviance: 449.08 on 7998 degrees of freedom
(35 observations deleted due to missingness)
AIC: -330.9

Number of Fisher Scoring iterations: 2

Processing math: 100%

tidy results

The broom package can help us here too!

The estimate is the coefficient or slope.

for one change in the traffic percentile, we see 0.003637 more Diesel particulate
emissions. The error for this estimate is relatively small at 0.00009. This
relationship appears to be significant with a small p value < 2e-16.

tidy(fit) %>% glimpse()

Rows: 2
Columns: 5
$ term

$ estimate
$ std.error
$ statistic
$ p.value

Processing math: 100%

<chr>
<dbl>
<dbl>
<dbl>
<dbl>

"(Intercept)", "TrafficPctl"

0.042451513, 0.003636512

0.00529915058, 0.00009177366

8.011003, 39.624789
0.000000000000001298339685723874315673279711277449496214034:

Linear regression: multiple predictors

Let's try adding another explanatory variable to our model, amount of daily Ozone concentration (0zone).
Ozone is usually inversely related to particulate measures.

fit2 <- glm(DieselPM ~ TrafficPctl + Ozone, data = calenviroscreen)
summary (fit2)

Call:
glm(formula = DieselPM ~ TrafficPctl + Ozone, data = calenviroscreen)

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 0.23025068 0.01347754 17.08 <0.0000000000000002 ***
TrafficPctl 0.00355094 0.00009067 39.16 <0.0000000000000002 ***
Ozone -3.77418894 0.24967138 -15.12 <0.0000000000000002 ***

Signif. codes: © '"***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.0545963)
Null deviance: 537.24 on 7999 degrees of freedom
Residual deviance: 436.61 on 7997 degrees of freedom
(35 observations deleted due to missingness)

AIC: -554.3

Number of Fisher Scoring iterations: 2

Processing math: 100%

Linear regression: multiple predictors

Can also use tidy and glimpse to see the output nicely.

fit2 %%
tidy() %%
glimpse()

Rows: 3
Columns: 5
$ term

$ estimate
$ std.error
$ statistic
$ p.value

Processing math: 100%

<chr>
<dbl>
<dbl>
<dbl>
<dbl>

"(Intercept)", "TrafficPctl", "Ozone"

0.23025068, 0.00355094, -3.77418894

0.01347753532, 0.00009067243, 0.24967137612

17.08403, 39.16229, -15.11663
0.0000000000000000000000000OEEOEEEOEEEOEEOEEEOEEOOEEOOEEOAAE

Linear regression: factors

Factors get special treatment in regression models - lowest level of the factor is
the comparison group, and all other factors are relative to its values.

Let's create a variable that tells us whether a census tract has a high, middle, or
low percentage of the population below the poverty line.

calenviroscreen <- calenviroscreen %>% mutate(
PovertyPctl _level = case_when(
PovertyPctl > 0.75 ~ "high",
PovertyPctl > 0.25 & PovertyPctl <= 0.75 ~ "middle",
PovertyPctl <= 0.25 ~ "low",
TRUE ~ NA

)
)

Processing math: 100%

Linear regression: factors

The comparison group that is not listed is treated as intercept. All other estimates are relative to the
intercept.

fit3 <- glm(DieselPM ~ TrafficPctl + Ozone + factor(PovertyPctl level), data = calenviroscreen)
summary (fit3)

Call:

glm(formula = DieselPM ~ TrafficPctl + Ozone + factor(PovertyPctl_level),
data = calenviroscreen)

Coefficients:

Estimate Std. Error t value
(Intercept) 0.22893847 0.01343002 17.047
TrafficPctl 0.00353551 0.00009034 39.137
Ozone -3.73294307 0.24881820 -15.003
factor(PovertyPctl_level)low -0.09685048 0.05463573 -1.773
factor (PovertyPctl _level)middle -0.11329720 0.03672457 -3.085

Pr(>It])

(Intercept) < 0.0000000000000002 ***
TrafficPctl < 0.0000000000000002 ***
Ozone < 0.0000000000000002 ***
factor (PovertyPctl_level)low 0.07632 .
factor (PovertyPctl level)middle 0.00204 **
Signif. codes: © '"***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.05357268)

Null deviance: 523.61 on 7933 degrees of freedom
Residual deviance: 424.78 on 7929 degrees of freedom
(101 observations deleted due to missingness)
AIC: -697.85

Number of Fisher Scoring iterations: 2

Processing math: 100%

Linear regression: factors

Relative to the level is not listed.

calenviroscreen <-
calenviroscreen %>%
mutate(PovertyPctl_level = factor(
PovertyPctl_level,
levels = c("low", "middle", "high")

))
fit4 <- glm(DieselPM ~ TrafficPctl + Ozone + PovertyPctl level, data = calenviroscreen)
summary (fit4)
Call:

glm(formula = DieselPM ~ TrafficPctl + Ozone + PovertyPctl_level,
data = calenviroscreen)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.13208799 0.05585244 2.365 0.0181 *
TrafficPctl 0.00353551 0.00009034 39.137 <0.0000000000000002 ***
Ozone -3.73294307 0.24881820 -15.003 <0.0000000000000002 ***
PovertyPctl_levelmiddle -0.01644672 0.06569819 -0.250 0.8023
PovertyPctl_levelhigh 0.09685048 0.05463573 1.773 0.0763
Signif. codes: © '"***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.05357268)

Null deviance: 523.61 on 7933 degrees of freedom
Residual deviance: 424.78 on 7929 degrees of freedom
(101 observations deleted due to missingness)
AIC: -697.85

Number of Fisher Scoring iterations: 2

Processing math: 100%

Linear regression: factors

You can view estimates for the comparison group by removing the intercept in the GLM formula
y ~x -1

Caveat is that the p-values change.

fits <- glm(DieselPM ~ TrafficPctl + Ozone + PovertyPctl level - 1, data = calenviroscreen)

summary (fit5s)
Call:
glm(formula = DieselPM ~ TrafficPctl + Ozone + PovertyPctl_level -

1, data = calenviroscreen)
Coefficients:

Estimate Std. Error t value Pr(>|t]|)

TrafficPctl 0.00353551 0.00009034 39.137 <0.0000000000000002 ***
Ozone -3.73294307 0.24881820 -15.003 <0.0000000000000002 ***
PovertyPctl_levellow 0.13208799 0.05585244 2.365 0.0181 *
PovertyPctl_levelmiddle 0.11564127 0.03838198 3.013 0.0026 **
PovertyPctl_levelhigh 0.22893847 0.01343002 17.047 <0.0000000000000002 ***

Signif. codes: © '"***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1
(Dispersion parameter for gaussian family taken to be 0.05357268)
Null deviance: 919.65 on 7934 degrees of freedom
Residual deviance: 424.78 on 7929 degrees of freedom
(101 observations deleted due to missingness)

AIC: -697.85

Number of Fisher Scoring iterations: 2

Processing math: 100%

Linear regression: interactions

You can also specify interactions between variables in a formulay ~ x1 + x2 + x1 * x2. This allows
for not only the intercepts between factors to differ, but also the slopes with regard to the interacting
variable.

fité <- glm(
DieselPM ~ TrafficPctl + 0Ozone + PovertyPctl level + TrafficPctl * PovertyPctl_level,
data = calenviroscreen

)
tidy(fit6)

A tibble: 7 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.200 0.113 1.77 7.62e- 2
2 TrafficPctl 0.00224 0.00186 1.21 2.28e- 1
3 Ozone -3.72 0.249 -14.9 7.90e-50
4 PovertyPctl_levelmiddle 0.00335 0.131 0.0256 9.80e- 1
5 PovertyPctl_levelhigh 0.0280 0.112 0.249 8.03e- 1
6 TrafficPctl:PovertyPctl_levelmiddle -0.000721 0.00227 -0.317 7.51e- 1
7 TrafficPctl:PovertyPctl_levelhigh 0.00131 0.00186 0.702 4.83e- 1

Processing math: 100%

Linear regression: interactions

By default, ggplot with a factor added as a color will look include the interaction term
different intercept and slope of the lines.

ggplot(calenviroscreen, aes(x = DieselPM, y = TrafficPctl, color = PovertyPctl_level)) +
geom_point(size = 1, alpha = 0.1) +
geom_smooth(method = "glm", se = FALSE) +
scale_color_manual(values = c("black", '"grey45", '"grey65", '"grey85")) +
theme_classic() +
ylim(0,100) +

x1im(0, 3)
100 4
75
PovertyPctl_leve
% — oW
s .
s‘(:_ﬁ 50 4 === middle
= high
— NA
25 1 4
3
? L]
ol ¥
0 1 2 3

DieselPM

Processing math: 100%

. Notice the

Generalized linear models (GLMs)

Generalized linear models (GLMs) allow for fitting regressions for non-
continuous/normal outcomes. Examples include: logistic regression, Poisson
regression.

Add the family argument - a description of the error distribution and link
function to be used in the model. These include;

binomial(link = "logit") - outcome is binary
poisson(link = "log") - outcome is count or rate
- others

Very important to use the right test!
See this case study for more information.

See ?family documentation for details of family functions.

Processing math: 100%

https://www.opencasestudies.org/ocs-bp-vaping-case-study/#Data_Analysis

Logistic regression

Let's look at a logistic regression example. We'll use the calenviroscreen dataset again. We will create a
new binary variable based on the DieselPM percentile variable, so we can tell whether a census tract has
high or low DieselPM emissions compared to the others.

calenviroscreen <-
calenviroscreen %>%
mutate(
DieselPM_level = case_when
(DieselPMPctl > 0.75 ~ 1,
DieselPMPctl <= 0.75 ~ 0))

Processing math: 100%

Logistic regression

Now that we've created the DieselPM_level variable (where a 1 indicates the census tract is one of the
top 75% when it comes to dieselPM emissions), we can run a logistic regression.

Let's explore how PovertyPctl_level might predict DieselPM_level.

General format
glm(y ~ x, data = DATASET_NAME, family = binomial(link = "logit"))

binom_fit <- glm(DieselPM_level ~ PovertyPctl_level, data = calenviroscreen, family = binomial(link = "logit"))
summary (binom_fit)

Call:
glm(formula = DieselPM_level ~ PovertyPctl_level, family = binomial(link = "logit"),
data = calenviroscreen)

Coefficients:

Estimate Std. Error z value Pr(>]|z])
(Intercept) 17.56606843873 932.48063065847 0.019 0.985
PovertyPctl_levelmiddle 0.00000004734 1118.59764091255 0.000 1.000
PovertyPctl_levelhigh -12.62378846430 932.48064030187 -0.014 0.989

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 666.77 on 7959 degrees of freedom
Residual deviance: 665.93 on 7957 degrees of freedom
(75 observations deleted due to missingness)
AIC: 671.93

Number of Fisher Scoring iterations: 16

Processing math: 100%

Logistic Regression

See this case study for more information.

Processing math: 100%

https://www.opencasestudies.org/ocs-bp-vaping-case-study/#Logistic_regression_%E2%80%9Cby_hand%E2%80%9D_and_by_model

Odds ratios

An odds ratio (OR) is a measure of association between an exposure and an
outcome. The OR represents the odds that an outcome will occur given a
particular exposure, compared to the odds of the outcome occurring in the
absence of that exposure.

Check out this paper.

Processing math: 100%

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938757/

Odds ratios

Use oddsratio(x, y) from the epitools() package to calculate odds ratios.

In this case, we're calculating the odds ratio for whether living in a high traffic area predicts high levels of
DieselPM.

library(epitools)

calenviroscreen <-
calenviroscreen %>%
mutate(
Traffic_level = case_when
(TrafficPctl > 0.75 ~ 1,
TrafficPctl <= 0.75 ~ 0))

response <- calenviroscreen %>% pull(DieselPM_level)
predictor <- calenviroscreen %>% pull(Traffic_level)

Processing math: 100%

Odds ratios

Use oddsratio(x, y) from the epitools() package to calculate odds ratios.

In this case, we're calculating the odds ratio for whether living in a high traffic area predicts high levels of
DieselPM.

oddsratio(predictor, response)

$data
Outcome
Predictor 0 1 Total
0 23 37 60
1 35 7905 7940

Total 58 7942 8000

$measure
odds ratio with 95% C.I.
Predictor estimate lower upper
0] 1.0000 NA NA

1 139.3968 74.58837 260.5596

$p.value
two-sided
Predictor midp.exact fisher.exact
0] NA NA
1 0 0.000000000000000000000000O0OCCOOOOOOO7956334
two-sided
Predictor
0]

1 0.000000000000000000000000000000000OOEOCOONEOEEOEOOEOOOOEOEOOEOOEEEOOEOEEOEOOEOOOOEOEOOEOOEOEOOEOOBOEOOANOL

$correction
[1] FALSE

attr(,"method") /

Processing math: 100% Lased estimate & mid-p exact CI"

Final note

Some final notes:

Researcher’s responsibility to understand the statistical method they use -
underlying assumptions, correct interpretation of method results

Researcher’s responsibility to understand the R software they use - meaning
of function’s arguments and meaning of function’s output elements

Processing math: 100%

Summary

glm() fits regression models:

Use the formula =argument to specify the model (e.g.,y ~ xory ~ x1
+ X2 using column names)

Use data =to indicate the dataset

Use family =to do a other regressions like logistic, Poisson and more

summary () gives useful statistics

+ oddsratio() from the epitools package can calculate odds ratios (outside of
logistic regression - which allows more than one explanatory variable)

- this is just the tip of the iceberg!

Processing math: 100%

Resources (also on the website!)

For more check out:

+ this chapter on modeling in this tidyverse book
+ this chart on when to do what test

- opencasestudies.org

Content for similar topics as this course can also be found on Leanpub.

Processing math: 100%

https://daseh.org/resources.html
https://jhudatascience.org/tidyversecourse/model.html#linear-modeling
https://www.scribbr.com/statistics/statistical-tests/

Lab Part 2
Class Website

Lab

Image by Gerd Altmann from Pixabay

Processing math: 100%

https://daseh.org/
https://daseh.org/modules/Statistics/lab/Statistics_Lab.Rmd
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

