

Factors

A factor is a special character vector where the elements have pre-defined groups or 'levels'. You can think of these as qualitative or categorical variables:

```
x <- c("yellow", "red", "red", "blue", "yellow", "blue")
class(x)</pre>
```

[1] "character"

```
x_fact <- factor(x) # factor() is a function
class(x_fact)
```

[1] "factor"

Factors

Х

Factors have **levels** (character types do not).

[1] "yellow" "red" "red" "blue" "yellow" "blue"
x_fact

[1] yellow red red blue yellow blue
Levels: blue red yellow

Note that levels are, by default, in **alphanumerical** order.

Factors

Extract the levels of a factor vector using levels():

levels(x_fact)
[1] "blue" "red" "yellow"

forcats package

A package called **forcats** is really helpful for working with factors.

factor() vs as_factor()

factor() is from base R and as_factor() is from forcats

Both can change a variable to be of class factor.

- factor() will order alphabetically unless told otherwise.
- as_factor() will order by **first appearance** unless told otherwise.

If you are assigning your levels manually either function is fine!

as_factor() function

x <- c("yellow", "red", "red", "blue", "yellow", "blue")
x_fact_2 <- as_factor(x)
x_fact_2</pre>

[1] yellow red red blue yellow blue
Levels: yellow red blue

```
# Compare to factor() method:
x_fact
```

[1] yellow red red blue yellow blue
Levels: blue red yellow

A Factor Example

We will use data on heat-related visits to the ER from the State of Colorado, separated by age category, for 2011-2022. More on this data can be found here: https://coepht.colorado.gov/heat-related-illness

You can download the data from the DaSEH website here: https://daseh.org/data/CO_ER_heat_visits_by_age_data.csv

This dataset is also available in the dasehr package.

We will limit the data to only one of the **gender** categories - we will choose "Both genders" because of data missingness.

library(dasehr)
er_visits_age <- CO_heat_ER_byage
#er_visits_age <- read_csv("https://daseh.org/data/CO_ER_heat_visits_by_age_data.csv")
er_visits_age <- er_visits_age %>%

filter(str_detect(GENDER, "Both genders"))

The data

head(er_visits_age)

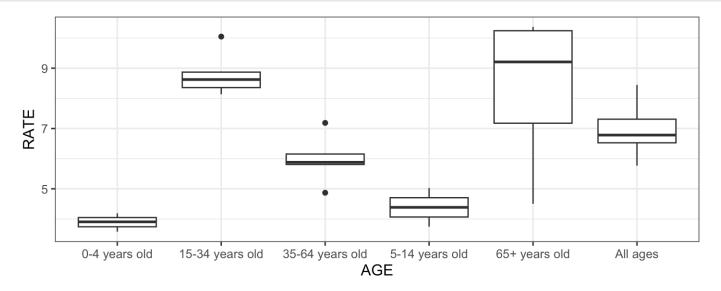
```
## # A tibble: 6 × 7
##
     YEAR GENDER
                       AGE
                                       RATE L95CL U95CL VISITS
                       <chr>
                                      <dbl> <dbl> <dbl>
##
    <dbl> <chr>
                                                         <dbl>
## 1
     2011 Both genders 0-4 years old
                                       3.52
                                             1.82
                                                   6.16
                                                            12
     2011 Both genders 15-34 years old 7.34 5.95
## 2
                                                  8.74
                                                           106
     2011 Both genders 35-64 years old
                                       5.84 4.80
## 3
                                                  6.88
                                                           121
## 4 2011 Both genders 5-14 years old
                                       5.20 3.50
                                                  6.90
                                                            36
## 5 2011 Both genders 65+ years old
                                       8.34 5.98 10.7
                                                           48
## 6 2011 Both genders All ages
                                       6.30 5.62 6.99
                                                           323
```

Notice that AGE is a chr variable. This indicates that the values are character strings.

R does not realize that there is any order related to the AGE values. It will assume that it is **alphabetical** (for numbers, this means ascending order).

However, we know that the order is: 0-4 years old, 5-14 years old, 15-34 years old, 35-64 years old, 65+ years old, and All ages.

For the next steps, let's take a subset of data.


Use set.seed() to take the same random sample each time.

set.seed(123)
er_visits_age_subset <- slice_sample(er_visits_age, n = 32)</pre>

Plot the data

Let's make a plot first.

```
er_visits_age_subset %>%
ggplot(mapping = aes(x = AGE, y = RATE)) +
geom_boxplot() +
theme_bw(base_size = 12) # make all labels size 12
```

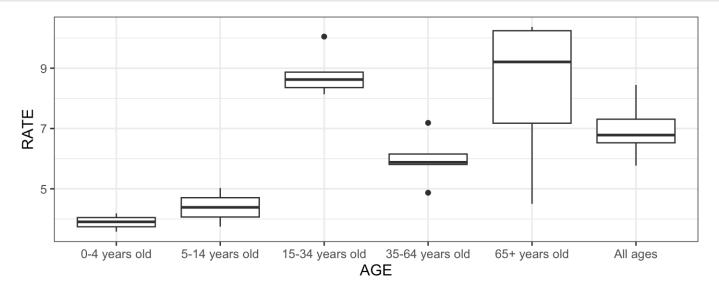

OK this is very useful, but it is a bit difficult to read. We expect the values to be plotted by the order that we know, not by alphabetical order.

Change to factor

Currently AGE is class character but let's change that to class factor which allows us to specify the levels or order of the values.

```
er_visits_age_fct <-
er_visits_age_subset %>%
mutate(AGE = factor(AGE,
    levels = c("0-4 years old", "5-14 years old", "15-34 years old", "35-64 ye
))
er_visits_age_fct %>%
pull(AGE) %>%
levels()
### [1] "0-4 years old" "5-14 years old" "15-34 years old" "35-64 years old"
## [5] "65+ years old" "All ages"
```

Change to a factor


head(er_visits_age_fct)

```
## # A tibble: 6 × 7
    YEAR GENDER
##
                      AGE
                                      RATE L95CL U95CL VISITS
##
    <dbl> <chr>
                      <fct>
                                     <dbl> <dbl> <dbl>
                                                      <dbl>
     2016 Both genders 0-4 years old 4.19 2.29 7.03
## 1
                                                         14
## 2 2019 Both genders 35-64 years old 7.19 6.07 8.30
                                                        159
     2013 Both genders 15-34 years old 8.13 6.69
## 3
                                                9.58
                                                        121
## 4 2022 Both genders 0-4 years old
                                   NA
                                          NA
                                                NA
                                                        NA
## 5 2017 Both genders All ages
                                      5.77 5.14 6.40
                                                        323
     2019 Both genders 15-34 years old 8.34 6.94 9.73
                                                        137
## 6
```

Plot again

Now let's make our plot again:

```
er_visits_age_fct %>%
ggplot(mapping = aes(x = AGE, y = RATE)) +
geom_boxplot() +
theme_bw(base_size = 12)
```


Now that's more like it! Notice how the data is automatically plotted in the order we would like.

What about if we arrange() the data by grade?

Character data is arranged alphabetically (if letters) or by ascending first number (if numbers).

er_visits_age_subset %>%
 arrange(AGE)

## # A tibble: 32 × 7											
##	YEAR GENDER			AGE			RATE	L95CL	U95CL	VISITS	
##		<dbl> <chr></chr></dbl>		<chr></chr>			<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	2016	Both	genders	0-4	years	old	4.19	2.29	7.03	14
##	2	2022	Both	genders	0-4	years	old	NA	NA	NA	NA
##	3	2018	Both	genders	0-4	years	old	3.91	2.08	6.68	13
##	4	2015	Both	genders	0-4	years	old	NA	NA	NA	NA
##	5	2021	Both	genders	0-4	years	old	NA	NA	NA	NA
##	6	2012	Both	genders	0-4	years	old	3.58	1.85	6.25	12
##	7	2020	Both	genders	0-4	years	old	NA	NA	NA	NA
##	8	2014	Both	genders	0-4	years	old	NA	NA	NA	NA
##	9	2013	Both	genders	15-3	34 yean	rs old	8.13	6.69	9.58	121
##	10	2019	Both	genders	15-3	34 yeaı	rs old	8.34	6.94	9.73	137
## # i 22 more rows											

Notice that the order is not what we would hope for!

Arranging Factors

Factor data is arranged by level.

er_visits_age_fct %>%
 arrange(AGE)

## # A tibble: 32 × 7											
##	YEAR GENDER			AGE			RATE	L95CL	U95CL	VISITS	
##	<dbl> <chr></chr></dbl>			<fct></fct>			<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	2016	Both	genders	0-4	years	old	4.19	2.29	7.03	14
##	2	2022	Both	genders	0-4	years	old	NA	NA	NA	NA
##	3	2018	Both	genders	0-4	years	old	3.91	2.08	6.68	13
##	4	2015	Both	genders	0-4	years	old	NA	NA	NA	NA
##	5	2021	Both	genders	0-4	years	old	NA	NA	NA	NA
##	6	2012	Both	genders	0-4	years	old	3.58	1.85	6.25	12
##	7	2020	Both	genders	0-4	years	old	NA	NA	NA	NA
##	8	2014	Both	genders	0-4	years	old	NA	NA	NA	NA
##	9	2022	Both	genders	5-14	4 years	s old	3.75	2.31	5.19	26
##	10	2015	Both	genders	5-14	4 years	s old	5.03	3.38	6.67	36
## # i 22 more rows											

Nice! Now this is what we would want!

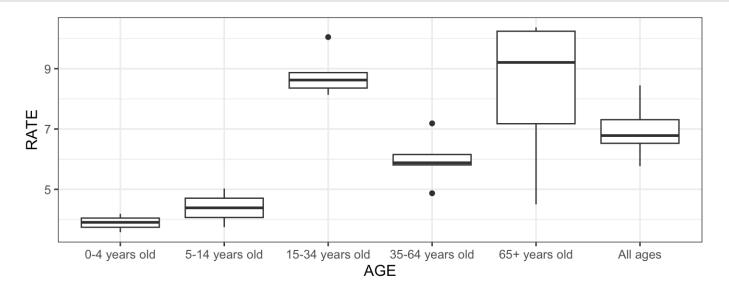
Making tables with characters

Tables grouped by a character are arranged alphabetically (if letters) or by ascending first number (if numbers).

```
er_visits_age_subset %>%
  group_by(AGE) %>%
  summarize(total_visits = sum(VISITS, na.rm = T))
## # A tibble: 6 × 2
## AGE
                    total_visits
## <chr>
                           <dbl>
## 1 0-4 years old
                              39
## 2 15-34 years old
                           831
## 3 35-64 years old
                           649
## 4 5-14 years old
                             62
## 5 65+ years old
                            389
## 6 All ages
                            1943
```

Making tables with factors

Tables grouped by a factor are arranged by level.


```
er_visits_age_fct %>%
  group_by(AGE) %>%
  summarize(total_visits = sum(VISITS, na.rm = T))
## # A tibble: 6 × 2
## AGE
                     total visits
## <fct>
                            <dbl>
## 1 0-4 years old
                               39
## 2 5-14 years old
                               62
## 3 15-34 years old
                            831
## 4 35-64 years old
                             649
## 5 65+ years old
                             389
## 6 All ages
                             1943
```

forcats for ordering

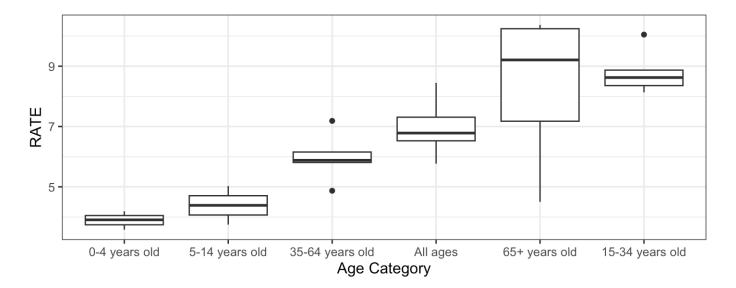
What if we wanted to order AGE by increasing `RATE``?

```
library(forcats)
er_visits_age_fct %>%
ggplot(mapping = aes(x = AGE, y = RATE)) +
geom_boxplot() +
```

theme_bw(base_size = 12)

This would be useful for identifying easily which age group to focus on.

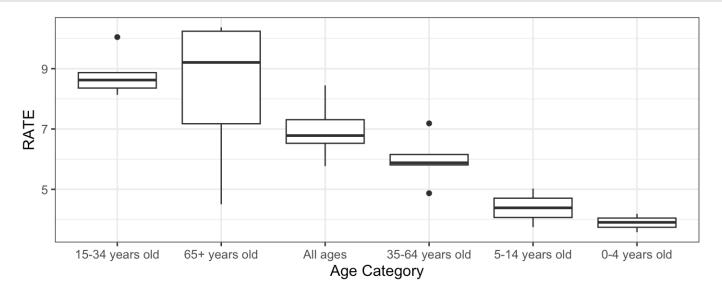
forcats for ordering


We can order a factor by another variable by using the fct_reorder() function of the forcats package.

fct_reorder({column getting changed}, {guiding column}, {summarizing function})

forcats for ordering

We can order a factor by another variable by using the fct_reorder() function of the forcats package.


```
library(forcats)
er_visits_age_fct %>%
ggplot(mapping = aes(x = fct_reorder(AGE, RATE, mean), y = RATE)) +
geom_boxplot() +
labs(x = "Age Category") +
theme_bw(base_size = 12)
```


forcats for ordering...with .desc = argument

```
library(forcats)
```

```
er_visits_age_fct %>%
ggplot(mapping = aes(x = fct_reorder(AGE, RATE, mean, .desc = TRUE), y = RATE)) +
geom_boxplot() +
labs(x = "Age Category") +
theme_bw(base_size = 12)
```


forcats for ordering.. can be used to sort datasets

er_visits_age_fct %>% pull(AGE) %>% levels() # By year order

[1] "0-4 years old" "5-14 years old" "15-34 years old" "35-64 years old" ## [5] "65+ years old" "All ages"

```
er_visits_age_fct <- er_visits_age_fct %>%
    mutate(
        AGE = fct_reorder(AGE, RATE, mean)
        )
```

er_visits_age_fct %>% pull(AGE) %>% levels() # by increasing mean dropouts

[1] "0-4 years old" "5-14 years old" "35-64 years old" "All ages"
[5] "65+ years old" "15-34 years old"

Checking Proportions with fct_count()

The fct_count() function of the forcats package is helpful for checking that the proportions of each level for a factor are similar. Need the prop = TRUE argument otherwise just counts are reported.

```
er_visits_age_fct %>%
  pull(AGE) %>%
 fct_count(prop = TRUE)
## # A tibble: 6 × 3
## f
                       n
                   <int> <dbl>
## <fct>
## 1 0-4 years old
                      8 0.25
## 2 5-14 years old 2 0.0625
  3 35-64 years old 5 0.156
##
## 4 All ages
                     5 0.156
## 5 65+ years old 6 0.188
## 6 15-34 years old 6 0.188
```

Summary

- the factor class allows us to have a different order from alphanumeric for categorical data
- we can change data to be a factor variable using mutate and a factor creating function like factor() or as_factor
- the as_factor() is from the forcats package (first appearance order by default)
- the factor() base R function (alphabetical order by default)
- with factor() we can specify the levels with the levels argument if we want a specific order
- the fct_reorder({variable_to_reorder}, {variable_to_order_by}, {summary function}) helps us reorder a variable by the values of another variable
- arranging, tabulating, and plotting the data will reflect the new order

Class Website Lab

Image by Gerd Altmann from Pixabay