
Factors

Factors

A factor is a special character vector where the elements have pre-defined
groups or ‘levels’. You can think of these as qualitative or categorical variables:

x <- c("yellow", "red", "red", "blue", "yellow", "blue")
class(x)

[1] "character"

x_fact <- factor(x) # factor() is a function
class(x_fact)

[1] "factor"

/

Factors

Factors have levels (character types do not).

Note that levels are, by default, in alphanumerical order.

x

[1] "yellow" "red" "red" "blue" "yellow" "blue"

x_fact

[1] yellow red red blue yellow blue
Levels: blue red yellow

/

Factors

Extract the levels of a factor vector using levels():

levels(x_fact)

[1] "blue" "red" "yellow"

/

forcats package

A package called forcats is really helpful for working with factors.

/

factor() vs as_factor()

factor() is from base R and as_factor() is from forcats

Both can change a variable to be of class factor.

If you are assigning your levels manually either function is fine!

factor() will order alphabetically unless told otherwise.

as_factor() will order by first appearance unless told otherwise.

·

·

/

as_factor() function

x <- c("yellow", "red", "red", "blue", "yellow", "blue")
x_fact_2 <- as_factor(x)
x_fact_2

[1] yellow red red blue yellow blue
Levels: yellow red blue

Compare to factor() method:
x_fact

[1] yellow red red blue yellow blue
Levels: blue red yellow

/

A Factor Example
We will use data on heat-related visits to the ER from the State of Colorado, separated by age category,
for 2011-2022. More on this data can be found here: https://coepht.colorado.gov/heat-related-illness

You can download the data from the DaSEH website here:
https://daseh.org/data/CO_ER_heat_visits_by_age_data.csv

This dataset is also available in the dasehr package.

We will limit the data to only one of the gender categories - we will choose “Both genders” because of
data missingness.

library(dasehr)
er_visits_age <- CO_heat_ER_byage

#er_visits_age <- read_csv("https://daseh.org/data/CO_ER_heat_visits_by_age_data.csv")

er_visits_age <- er_visits_age %>%
 filter(str_detect(GENDER, "Both genders"))

/

https://coepht.colorado.gov/heat-related-illness
https://daseh.org/data/CO_ER_heat_visits_by_age_data.csv

The data

Notice that AGE is a chr variable. This indicates that the values are character
strings.

R does not realize that there is any order related to the AGE values. It will assume
that it is alphabetical (for numbers, this means ascending order).

However, we know that the order is: 0-4 years old, 5-14 years old, 15-34 years
old, 35-64 years old, 65+ years old, and All ages.

head(er_visits_age)

A tibble: 6 × 7
YEAR GENDER AGE RATE L95CL U95CL VISITS
<dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 2011 Both genders 0-4 years old 3.52 1.82 6.16 12
2 2011 Both genders 15-34 years old 7.34 5.95 8.74 106
3 2011 Both genders 35-64 years old 5.84 4.80 6.88 121
4 2011 Both genders 5-14 years old 5.20 3.50 6.90 36
5 2011 Both genders 65+ years old 8.34 5.98 10.7 48
6 2011 Both genders All ages 6.30 5.62 6.99 323

/

For the next steps, let’s take a subset of data.

Use set.seed() to take the same random sample each time.

set.seed(123)
er_visits_age_subset <- slice_sample(er_visits_age, n = 32)

/

Plot the data

Let’s make a plot first.

OK this is very useful, but it is a bit difficult to read. We expect the values to be
plotted by the order that we know, not by alphabetical order.

er_visits_age_subset %>%
 ggplot(mapping = aes(x = AGE, y = RATE)) +
 geom_boxplot() +
 theme_bw(base_size = 12) # make all labels size 12

/

Change to factor

Currently AGE is class character but let’s change that to class factor which
allows us to specify the levels or order of the values.

er_visits_age_fct <-
 er_visits_age_subset %>%
 mutate(AGE = factor(AGE,
 levels = c("0-4 years old", "5-14 years old", "15-34 years old", "35-64 ye
))

er_visits_age_fct %>%
 pull(AGE) %>%
 levels()

[1] "0-4 years old" "5-14 years old" "15-34 years old" "35-64 years old"
[5] "65+ years old" "All ages"

/

Change to a factor

head(er_visits_age_fct)

A tibble: 6 × 7
YEAR GENDER AGE RATE L95CL U95CL VISITS
<dbl> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
1 2016 Both genders 0-4 years old 4.19 2.29 7.03 14
2 2019 Both genders 35-64 years old 7.19 6.07 8.30 159
3 2013 Both genders 15-34 years old 8.13 6.69 9.58 121
4 2022 Both genders 0-4 years old NA NA NA NA
5 2017 Both genders All ages 5.77 5.14 6.40 323
6 2019 Both genders 15-34 years old 8.34 6.94 9.73 137

/

Plot again

Now let’s make our plot again:

Now that’s more like it! Notice how the data is automatically plotted in the order
we would like.

er_visits_age_fct %>%
 ggplot(mapping = aes(x = AGE, y = RATE)) +
 geom_boxplot() +
 theme_bw(base_size = 12)

/

What about if we arrange() the data by grade ?

Character data is arranged alphabetically (if letters) or by ascending first number (if numbers).

Notice that the order is not what we would hope for!

er_visits_age_subset %>%
 arrange(AGE)

A tibble: 32 × 7
YEAR GENDER AGE RATE L95CL U95CL VISITS
<dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 2016 Both genders 0-4 years old 4.19 2.29 7.03 14
2 2022 Both genders 0-4 years old NA NA NA NA
3 2018 Both genders 0-4 years old 3.91 2.08 6.68 13
4 2015 Both genders 0-4 years old NA NA NA NA
5 2021 Both genders 0-4 years old NA NA NA NA
6 2012 Both genders 0-4 years old 3.58 1.85 6.25 12
7 2020 Both genders 0-4 years old NA NA NA NA
8 2014 Both genders 0-4 years old NA NA NA NA
9 2013 Both genders 15-34 years old 8.13 6.69 9.58 121
10 2019 Both genders 15-34 years old 8.34 6.94 9.73 137
ℹ 22 more rows

/

Arranging Factors
Factor data is arranged by level.

Nice! Now this is what we would want!

er_visits_age_fct %>%
 arrange(AGE)

A tibble: 32 × 7
YEAR GENDER AGE RATE L95CL U95CL VISITS
<dbl> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
1 2016 Both genders 0-4 years old 4.19 2.29 7.03 14
2 2022 Both genders 0-4 years old NA NA NA NA
3 2018 Both genders 0-4 years old 3.91 2.08 6.68 13
4 2015 Both genders 0-4 years old NA NA NA NA
5 2021 Both genders 0-4 years old NA NA NA NA
6 2012 Both genders 0-4 years old 3.58 1.85 6.25 12
7 2020 Both genders 0-4 years old NA NA NA NA
8 2014 Both genders 0-4 years old NA NA NA NA
9 2022 Both genders 5-14 years old 3.75 2.31 5.19 26
10 2015 Both genders 5-14 years old 5.03 3.38 6.67 36
ℹ 22 more rows

/

Making tables with characters

Tables grouped by a character are arranged alphabetically (if letters) or by
ascending first number (if numbers).

er_visits_age_subset %>%
 group_by(AGE) %>%
 summarize(total_visits = sum(VISITS, na.rm = T))

A tibble: 6 × 2
AGE total_visits
<chr> <dbl>
1 0-4 years old 39
2 15-34 years old 831
3 35-64 years old 649
4 5-14 years old 62
5 65+ years old 389
6 All ages 1943

/

Making tables with factors

Tables grouped by a factor are arranged by level.

er_visits_age_fct %>%
 group_by(AGE) %>%
 summarize(total_visits = sum(VISITS, na.rm = T))

A tibble: 6 × 2
AGE total_visits
<fct> <dbl>
1 0-4 years old 39
2 5-14 years old 62
3 15-34 years old 831
4 35-64 years old 649
5 65+ years old 389
6 All ages 1943

/

forcats for ordering

What if we wanted to order AGE by increasing `RATE``?

This would be useful for identifying easily which age group to focus on.

library(forcats)

er_visits_age_fct %>%
 ggplot(mapping = aes(x = AGE, y = RATE)) +
 geom_boxplot() +
 theme_bw(base_size = 12)

/

forcats for ordering
We can order a factor by another variable by using the fct_reorder() function of the forcats package.

fct_reorder({column getting changed}, {guiding column}, {summarizing function})

/

forcats for ordering
We can order a factor by another variable by using the fct_reorder() function of the forcats package.

library(forcats)

er_visits_age_fct %>%
 ggplot(mapping = aes(x = fct_reorder(AGE, RATE, mean), y = RATE)) +
 geom_boxplot() +
 labs(x = "Age Category") +
 theme_bw(base_size = 12)

/

forcats for ordering.. with .desc = argument

library(forcats)

er_visits_age_fct %>%
 ggplot(mapping = aes(x = fct_reorder(AGE, RATE, mean, .desc = TRUE), y = RATE)) +
 geom_boxplot() +
 labs(x = "Age Category") +
 theme_bw(base_size = 12)

/

forcats for ordering.. can be used to sort datasets

er_visits_age_fct %>% pull(AGE) %>% levels() # By year order

[1] "0-4 years old" "5-14 years old" "15-34 years old" "35-64 years old"
[5] "65+ years old" "All ages"

er_visits_age_fct <- er_visits_age_fct %>%
 mutate(
 AGE = fct_reorder(AGE, RATE, mean)
)

er_visits_age_fct %>% pull(AGE) %>% levels() # by increasing mean dropouts

[1] "0-4 years old" "5-14 years old" "35-64 years old" "All ages"
[5] "65+ years old" "15-34 years old"

/

Checking Proportions with fct_count()

The fct_count() function of the forcats package is helpful for checking that
the proportions of each level for a factor are similar. Need the prop = TRUE
argument otherwise just counts are reported.

er_visits_age_fct %>%
 pull(AGE) %>%
 fct_count(prop = TRUE)

A tibble: 6 × 3
f n p
<fct> <int> <dbl>
1 0-4 years old 8 0.25
2 5-14 years old 2 0.0625
3 35-64 years old 5 0.156
4 All ages 5 0.156
5 65+ years old 6 0.188
6 15-34 years old 6 0.188

/

Summary

the factor class allows us to have a different order from alphanumeric for
categorical data

we can change data to be a factor variable using mutate and a factor creating
function like factor() or as_factor

the as_factor() is from the forcats package (first appearance order by
default)

the factor() base R function (alphabetical order by default)

with factor() we can specify the levels with the levels argument if we want
a specific order

the fct_reorder({variable_to_reorder}, {variable_to_order_by},
{summary function}) helps us reorder a variable by the values of another
variable

arranging, tabulating, and plotting the data will reflect the new order

·

·

·

·

·

·

·

/

Lab

🏠 Class Website
💻 Lab

Image by Gerd Altmann from Pixabay

/

https://daseh.org/
https://daseh.org/modules//Factors/lab/Factors_Lab.Rmd
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

