
Data Visualization

Recap

📃Cheatsheet

pivot_longer() helps us take our data from wide to long format

pivot_wider() helps us take our data from long to wide format

to merge/join data sets together need a variable in common - usually “id”

·

names_to = gives a new name to the pivoted columns

values_to = gives a new name to the values that used to be in those
columns

-

-

·

names_from specifies the old column name that contains the new column
names

values_from specifies the old column name that contains new cell values

-

-

·

/

https://daseh.org/modules/cheatsheets/Day-6.pdf

Recap continued

📃Cheatsheet

to merge/join data sets together need a variable in common - usually “id”

?join - see different types of joining for dplyr

inner_join(x, y) - only rows that match for x and y are kept

full_join(x, y) - all rows of x and y are kept

left_join(x, y) - all rows of x are kept even if not merged with y

right_join(x, y) - all rows of y are kept even if not merged with x

anti_join(x, y) - all rows from x not in y keeping just columns from x.

esquisser() function of the esquisse package can help make plot sketches

·

·

·

·

·

·

·

·

/

https://daseh.org/modules/cheatsheets/Day-6.pdf

esquisse and ggplot2

/

Why learn ggplot2?

More customization:

Easier plot automation (creating plots in scripts)

Faster (eventually)

branding

making plots interactive

combining plots

·

·

·

/

ggplot2

Resources:

A package for producing graphics - gg = Grammar of Graphics

Created by Hadley Wickham in 2005

Belongs to “Tidyverse” family of packages

“Make a ggplot” = Make a plot with the use of ggplot2 package

·

·

·

·

https://ggplot2-book.org/

https://www.opencasestudies.org/

·

·

/

https://ggplot2-book.org/
https://www.opencasestudies.org/

ggplot2

Based on the idea of:

layering

plot objects are placed on top of each other with +

📉 +
📈

/

ggplot2

Slide Credit: Tanya Shapiro

/

ggplot2

Pros: extremely powerful/flexible – allows combining multiple plot elements
together, allows high customization of a look, many resources online

Cons: ggplot2-specific “grammar of graphic” of constructing a plot

ggplot2 gallery

·

·

·

/

https://www.r-graph-gallery.com/ggplot2-package.html

Tidy data

To make graphics using ggplot2, our data needs to be in a tidy format

Tidy data:

Messy data:

1. Each variable forms a column.

2. Each observation forms a row.

Column headers are values, not variable names.

Multiple variables are stored in one column.

Variables are stored in both rows and columns.

·

·

·

/

Tidy data: example

Ideally we want each variable as a column and we want each observation in a
row.

Column headers are values, not variable names:

/

Now the the data is “tidy” and in long format

Read more about tidy data and see other examples: Tidy Data tutorial

/

https://vita.had.co.nz/papers/tidy-data.pdf

Data to plot

Type ?er_CO_statewide for more information.

Is the data in tidy? Is it in long format?

er_state <- er_CO_statewide

head(er_state)

A tibble: 6 × 5
 rate lower95cl upper95cl visits year
 <dbl> <dbl> <dbl> <dbl> <dbl>
1 6.51 5.80 7.23 323 2011
2 6.58 5.88 7.29 339 2012
3 5.82 5.16 6.49 302 2013
4 4.44 3.87 5.01 237 2014
5 6.55 5.86 7.25 355 2015
6 8.46 7.68 9.23 467 2016

/

First plot with ggplot2 package

First layer of code with ggplot2 package

Will set up the plot - it will be empty!

/

First layer of code with ggplot2 package

Aesthetic mapping aes(x= , y =) describes how variables in our data are
mapped to elements of the plot - Note you don’t need to use mapping but it is
helpful to know what we are doing.

·

library(ggplot2) # don't forget to load ggplot2
This is not code but shows the general format
ggplot({data_to plot}, aes(x = {var in data to plot},
 y = {var in data to plot}))

ggplot(er_state, aes(x = year, y = rate))

/

Next layer code with ggplot2 package

There are many to choose from, to list just a few:

geom_point() – points (we have seen)

geom_line() – lines to connect observations

geom_boxplot() – boxplots

geom_histogram() – histogram

geom_bar() – bar plot

geom_col() – column plot

geom_tile() – blocks filled with color

·

·

·

·

·

·

·

/

Next layer code with ggplot2 package

When to use what plot? A few examples:

a scatterplot (geom_point()): to examine the relationship between two sets of
continuous numeric data

a barplot (geom_bar()): to compare the distribution of a quantitative variable
(numeric) between groups or categories

a histogram (geom_hist()): to observe the overall distribution of numeric
data

a boxplot (geom_boxplot()): to compare values between different factor
levels or categories

·

·

·

·

/

Next layer code with ggplot2 package

Need the + sign to add the next layer to specify the type of plot

Read as: using CO statewide ER heat visits data, and provided aesthetic mapping, add
points to the plot

ggplot({data_to plot}, aes(x = {var in data to plot},
 y = {var in data to plot})) +
 geom_{type of plot}</div>

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point()

/

Tip - plus sign + must come at end of line

Having the + sign at the beginning of a line will not work!

Pipes will also not work in place of +!

ggplot(er_state, aes(x = year,
 y = rate,
 fill = item_categ))
 + geom_boxplot()

ggplot(er_state, aes(x = year,
 y = rate,
 fill = item_categ)) %>%
geom_boxplot()

/

Plots can be assigned as an object

plt1 <- ggplot(er_state, aes(x = year, y = rate)) +
 geom_point()

plt1

/

Examples of different geoms

plt1 <- ggplot(er_state, aes(x = year, y = rate)) +
 geom_point()

plt2 <- ggplot(er_state, aes(x = year, y = rate)) +
 geom_line()

plt1 # fig.show = "hold" makes plots appear
plt2 # next to one another in the chunk settings

/

Specifying plot layers: combining multiple layers

Layer a plot on top of another plot with +

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point() +
 geom_line()

/

Adding color - can map color to a variable

set.seed(123)
er_visits_4 <- er_CO_county %>%
 filter(county %in% c("Denver", "Weld", "Pueblo", "Jackson"))

ggplot(er_visits_4, aes(x = year, y = rate, color = county)) +
 geom_point() +
 geom_line()

/

Customize the look of the plot

Customize the look of the plot

You can change the look of whole plot using theme_*() functions.

There are also size, color, alpha, and linetype arguments.

ggplot(er_state, aes(x = year, y = rate)) +

 geom_point(size = 5, color = "green", alpha = 0.5) +

 geom_line(size = 0.8, color = "blue", linetype = 2) +

 theme_dark()

/

https://ggplot2.tidyverse.org/reference/ggtheme.html

More themes!

There’s not only the built in ggplot2 themes but all kinds of themes from other
packages! - ggthemes - ThemePark package - hrbr themes

/

https://jrnold.github.io/ggthemes/
https://github.com/MatthewBJane/ThemePark
https://github.com/hrbrmstr/hrbrthemes

Adding labels

The labs() function can help you add or modify titles on your plot. The title
argument specifies the title. The x argument specifies the x axis label. The y
argument specifies the y axis label.

ggplot(er_state, aes(x = year, y = rate)) +

 geom_point(size = 5, color = "red", alpha = 0.5) +

 geom_line(size = 0.8, color = "brown", linetype = 2) +

 labs(title = "My plot of Heat-Related ER Visits in CO",

 x = "Year",

 y = "Age-adjusted Visit Rate")

/

Changing axis: specifying axis scale

scale_x_continuous() and scale_y_continuous() can change how the axis
is plotted. Can use the breaks argument to specify how you want the axis ticks.

range(pull(er_visits_4, year))

[1] 2011 2022

plot_scale <- ggplot(er_state, aes(x = year, y = rate)) +

 geom_point(size = 5, color = "green", alpha = 0.5) +

 geom_line(size = 0.8, color = "blue", linetype = 2) +

 scale_x_continuous(breaks = seq(from = 2011, to = 2022, by = 1))

plot_scale

/

Modifying plot objects

You can add to a plot object to make changes! Note that we can save our plots as
an object like plt1 below. And now if we reference plt1 again our plot will print
out!

plt1 <- ggplot(er_state, aes(x = year, y = rate,)) +

 geom_point(size = 5, color = "green", alpha = 0.5) +geom_line(size = 0.8, color = "blue", linetype = 2) +

 labs(title = "My plot of Heat-Related ER Visits in CO", x = "Year", y = "Age-adjusted Visit Rate")

plt1 + theme_minimal()

/

Removing the legend label

You can use theme(legend.position = "none") to remove the legend.

er_visits_4 %>% ggplot(aes(x = year,
 y = rate,
 color = county)) +
 geom_line(size = 0.8) +
 theme(legend.position = "none")

/

Overwriting specifications

It’s possible to go in and change specifications with newer layers. Here is our
original plot.

er_visits_4 %>% ggplot(aes(x = year,
 y = rate,
 color = county)) +
 geom_line(size = 0.8)

/

Overwriting specifications

It’s possible to go in and change specifications with newer layers.

er_visits_4 %>% ggplot(aes(x = year,
 y = rate,
 color = county)) +
 geom_line(size = 0.8, color = "black")

/

Summary

ggplot() specifies what data use and what variables will be mapped to where

inside ggplot(), aes(x = , y = , color =) specify what variables
correspond to what aspects of the plot in general

layers of plots can be combined using the + at the end of lines

special theme_*() functions can change the overall look

individual layers can be customized using arguments like: size, color alpha
(more transparent is closer to 0), and linetype

labels can be added with the labs() function and x, y, title arguments

scale_x_continuous() and scale_y_continuous() can modify the scale of
the axes

by default, ggplot() removes points with missing values from plots.

·

·

·

·

·

·

·

·

/

https://ggplot2.tidyverse.org/reference/ggtheme.html

Lab 1

🏠 Class Website
💻 Lab

/

https://daseh.org/
https://daseh.org/modules//Data_Visualization/lab/Data_Visualization_Lab.Rmd

theme() function:

The theme() function can help you modify various elements of your plot. Here
we will adjust the font size of the plot title.

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point(size = 5, color = "green", alpha = 0.5) +
 geom_line(size = 0.8, color = "blue", linetype = 2) +
 labs(title = "My plot of Heat-Related ER Visits in CO") +
 theme(plot.title = element_text(size = 20))

/

theme() function

The theme() function always takes:

1. an object to change (use ?theme() to see - plot.title, axis.title,
axis.ticks etc.)

2. the aspect you are changing about this: element_text(), element_line(),
element_rect(), element_blank()

3. what you are changing:

text: size, color, fill, face, alpha, angle

position: "top", "bottom", "right", "left", "none"

rectangle: size, color, fill, linetype

line: size, color, linetype

·

·

·

·

/

theme() function: center title and change size

The theme() function can help you modify various elements of your plot. Here
we will adjust the horizontal justification (hjust) of the plot title.

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point(size = 5, color = "green", alpha = 0.5) +
 geom_line(size = 0.8, color = "blue", linetype = 2) +
 labs(title = "My plot of Heat-Related ER Visits in CO") +
 theme(plot.title = element_text(hjust = 0.5, size = 20))

/

theme() function: change title and axis format

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point(size = 5, color = "green", alpha = 0.5) +
 geom_line(size = 0.8, color = "blue", linetype = 2) +
 labs(title = "My plot of Heat-Related ER Visits in CO") +
 theme(plot.title = element_text(hjust = 0.5, size = 20),
 axis.title = element_text(size = 16))

/

Cheatsheet about theme

https://github.com/claragranell/ggplot2/blob/main/ggplot_theme_system_cheatsheet.p

/

https://github.com/claragranell/ggplot2/blob/main/ggplot_theme_system_cheatsheet.pdf

Starting a plot

Let’s start with er_visits_4.

ggplot(er_visits_4, aes(x = year,
 y = rate)) +
 geom_line()

/

If it looks confusing to you, try again

/

Using group in plots

You can use group element in a mapping to indicate that each county will have a
rate line.

ggplot(er_visits_4, aes(x = year,
 y = rate,
 group = county)) +
 geom_line()

/

Adding color will automatically group the data

ggplot(er_visits_4, aes(x = year,
 y = rate,
 color = county)) +
 geom_line()+
 theme(legend.position = "bottom")

/

Tips!

Let’s talk additional tricks and tips for making ggplots!

We are going to use some other data about ER visits that has to do with gender.
Note that gender was recorded as binary, which we know isn’t really accurate.
This is something you might encounter. Please see this article about ways to
measure gender in a more inclusive way:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526522/.

/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526522/

Tips - Color vs Fill

color is needed for points and lines

fill is generally needed for boxes and bars

·

·

er_visits_gender <- CO_heat_ER_bygender

ggplot(er_visits_gender, aes(x = gender,

 y = rate,

 color = gender)) + #color creates an outline

 geom_boxplot()

ggplot(er_visits_gender, aes(x = gender,

 y = rate,

 fill = gender)) + # fills the boxplot

 geom_boxplot()

/

Tip - Good idea to add jitter layer to top of box plots

Can add width argument to make the jitter more narrow.

ggplot(er_visits_gender, aes(x = gender,
 y = rate,
 fill = gender)) +
 geom_boxplot() +
 geom_jitter(width = .06)

/

Tip - be careful about colors for color vision deficiency

scale_fill_viridis_d() for discrete /categorical data
scale_fill_viridis_c() for continuous data

ggplot(er_visits_gender, aes(x = gender,
 y = rate,
 fill = gender)) +
 geom_boxplot() +
 geom_jitter(width = .06) +
 scale_fill_viridis_d()

/

Tip - can pipe data after wrangling into ggplot()

er_bar <- er_visits_gender %>%
 group_by(gender) %>%
 summarize("max_rate" = max(rate, na.rm=T)) %>%

ggplot(aes(x = gender,
 y = max_rate,
 fill = gender)) +
 scale_fill_viridis_d()+
 geom_col() +
 theme(legend.position = "none")

er_bar

/

Tip - color outside of aes()

Can be used to add an outline around column/bar plots.

er_bar +
 geom_col(color = "black")

/

Tip - col vs bar

geom_bar(x =) can only use one aes mapping geom_col(x = , y =) can
have two

/

Tip - Check what you plot

⚠️ May not be plotting what you think you are! ⚠️

ggplot(er_visits_gender, aes(x = gender,

 y = visits,

 fill = gender)) +

 geom_col()

/

What did we plot? Always good to check it is correct!

head(er_visits_gender, n = 3)

A tibble: 3 × 7

 county rate lower95cl upper95cl visits year gender

 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>

1 Adams 7.60 4.38 11.7 17 2011 Female

2 Adams NA NA NA NA 2012 Female

3 Adams 6.22 3.37 9.93 14 2013 Female

er_visits_gender %>% group_by(gender) %>%

 summarize(sum = sum(visits, na.rm=T))

A tibble: 2 × 2

 gender sum

 <chr> <dbl>

1 Female 2556

2 Male 4331

/

Try that again

er_visits_gender %>% group_by(gender, county) %>%

 summarize(mean_visits = mean(visits, na.rm=T))

A tibble: 20 × 3

Groups: gender [2]

 gender county mean_visits

 <chr> <chr> <dbl>

 1 Female Adams 15.8

 2 Female Arapahoe 14.4

 3 Female Cheyenne 0

 4 Female Denver 14.4

 5 Female El Paso 15.3

 6 Female Jefferson 14.1

 7 Female Larimer 13.5

 8 Female Pueblo 12.7

 9 Female Statewide 142.

10 Female Weld 15

11 Male Adams 18.9

12 Male Arapahoe 17.3

13 Male Cheyenne 0

14 Male Denver 22.5

15 Male El Paso 23.1

16 Male Jefferson 16.3

17 Male Larimer 20.7

18 Male Pueblo 17.1

19 Male Statewide 225.

20 Male Weld 17.5

/

Try that again

er_visits_gender %>% group_by(gender, county) %>%

 summarize(mean_visits = mean(visits, na.rm=T)) %>%

ggplot(aes(x = gender,

 y = mean_visits,

 fill = gender)) +

 geom_col()

/

Tip - make sure labels aren’t too small

er_bar +
 theme(text = element_text(size = 20))

/

Sometimes we have many lines and it is hard to see what is happening

er_visits_9 <- er_CO_county %>%

 filter(county %in% c("Denver", "Weld", "Pueblo", "Jackson",

 "San Juan", "Mesa", "Jefferson", "Larimer", "Statewide"))

lots_of_lines <- ggplot(er_visits_9, aes(x = year,

 y = rate,

 color = county)) +

 geom_line()

lots_of_lines

/

Adding a facet can help make it easier to see what is happening

Sometimes we have two many lines and can git difficult to see what is
happening, facets can help!

Two options: facet_grid()- creates a grid shape facet_wrap() -more flexible

Need to specify how you are faceting with the ~ sign.

lots_of_lines +

facet_grid(~ county) +

theme(legend.position = "bottom")

/

Adding a facet can help make it easier to see what is happening

lots_of_lines +
facet_grid(~ county) +
theme(legend.position = "none") +
theme(axis.text.x = element_text(angle = 90))

/

facet_wrap()

more flexible - arguments ncol and nrow can specify layout

can have different scales for axes using scales = "free"

·

·

rp_fac_plot <- lots_of_lines +

 facet_wrap(~ county, ncol = 4, scales = "free") +

 theme(legend.position = "none")

rp_fac_plot

/

plotly

Also check out the ggiraph package

#install.packages("plotly")
library("plotly") # creates interactive plots!
ggplotly(lots_of_lines)

2012.5 2015.0 2017.5 2020.0 2022.5

0

5

10

15

20

county
Denver

Jackson

Jefferson

Larimer

Mesa

Pueblo

San Juan

Statewide

Weld

year

ra
te

/

https://www.rdocumentation.org/packages/ggiraph/versions/0.6.1
https://plotly.com/
https://plotly.com/

Saving plots

Saving a ggplot to file

A few options:

RStudio > Plots > Export > Save as image / Save as PDF

RStudio > Plots > Zoom > [right mouse click on the plot] > Save image as

In the code

·

·

·

ggsave(filename = "saved_plot.png", # will save in working directory
 plot = rp_fac_plot,
 width = 6, height = 3.5) # by default in inches

/

Summary

The theme() function helps you specify aspects about your plot

sometimes you need to add a group element to aes() if your plot looks
strange

make sure you are plotting what you think you are by checking the numbers!

facet_grid(~ variable) and facet_wrap(~variable) can be helpful to
quickly split up your plot

use fill to fill in boxplots

·

move or remove a legend with theme(legend.position = "none")

change font aspects of individual text elements theme(plot.title =
element_text(size = 20))

center a title: theme(plot.title = element_text(hjust = 0.5))

-

-

-

·

·

·

facet_wrap() allows for a scales = "free" argument so that you can
have a different axis scale for different plots

-

·

/

Good practices for plots

Check out this guide for more information!

/

https://jhudatascience.org/tidyversecourse/dataviz.html#making-good-plots

Lab 2

🏠 Class Website
💻 Lab

Image by Gerd Altmann from Pixabay

/

https://daseh.org/
https://daseh.org/modules//Data_Visualization/lab/Data_Visualization_Lab.Rmd
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

Extra Slides

Adding color - or change the color of each plot layer

You can change look of each layer separately. Note the arguments like linetype
and alpha that allow us to change the opacity of the points and style of the line
respectively.

linetype can be given as a number. See the docs for what numbers correspond
to what linetype!

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point(size = 5, color = "red", alpha = 0.5) +
 geom_line(size = 0.8, color = "black", linetype = 2)

/

Customize the look of the plot

You can change the look of whole plot - specific elements, too - like changing
font and font size - or even more fonts

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point(size = 5, color = "green", alpha = 0.5) +
 geom_line(size = 0.8, color = "blue", linetype = 2) +
 theme_bw() +
 theme(text=element_text(size=16, family="Comic Sans MS"))

/

http://www.cookbook-r.com/Graphs/Fonts/
https://blog.revolutionanalytics.com/2012/09/how-to-use-your-favorite-fonts-in-r-charts.html

Adding labels line break

Line breaks can be specified using \n within the labs() function to have a label
with multiple lines.

ggplot(er_state, aes(x = year, y = rate)) +

 geom_point(size = 5, color = "red", alpha = 0.5) +

 geom_line(size = 0.8, color = "brown", linetype = 2) +

 labs(title = "My plot of Heat-Related ER Visits in CO: \n age-adjusted visit rate by year",

 x = "Year",

 y = "Age-adjusted Visit Rate")

/

Changing axis: specifying axis limits

xlim() and ylim() can specify the limits for each axis

ggplot(er_state, aes(x = year, y = rate)) +
 geom_point(size = 5, color = "green", alpha = 0.5) +
 geom_line(size = 0.8, color = "blue", linetype = 2) +
 labs(title = "My plot of Heat-Related ER Visits in CO",
 x = "Year",
 y = "Age-adjusted Visit Rate") +
 ylim(0, max(pull(er_visits_4, rate)))

/

theme() function: moving (or removing) legend

If specifying position - use: “top”, “bottom”, “right”, “left”, “none”

ggplot(er_visits_4, aes(x = year, y = rate, color = county)) +

 geom_line()

ggplot(er_visits_4, aes(x = year, y = rate, color = county)) +

 geom_line() +

 theme(legend.position = "bottom")

/

Keys for specifications

linetype

source

/

http://www.cookbook-r.com/Graphs/Shapes_and_line_types/figure/line_types-1.png

Linetype key

geoms that draw lines have a linetype parameter

these include values that are strings like “blank”, “solid”, “dashed”, “dotdash”,
“longdash”, and “twodash”

·

·

er_state %>% ggplot(aes(x = year,
 y = rate)) +
 geom_line(size = 0.8, linetype = "twodash")

/

Keys for specifications

shape

source

/

http://www.cookbook-r.com/Graphs/Shapes_and_line_types/figure/unnamed-chunk-2-1.png

shape key

geoms that draw have points have a shape parameter

these include numeric values (don’t need quotes for these) and some
characters values (need quotes for these)

·

·

er_state %>% ggplot(aes(x = year,
 y = rate)) +
 geom_point(size = 2, shape = 12)

/

Can make your own theme to use on plots!

Guide on how to: https://rpubs.com/mclaire19/ggplot2-custom-themes

/

https://rpubs.com/mclaire19/ggplot2-custom-themes

Tip- if you need you can remove outliers

Set outlier.shape = NA to get ride of outliers. Be careful about if you really
should remove these!

However, if can be helpful if your plot is getting stretched to accommodate
plotting an outlier. You can always say in the figure legend what you removed.

er_no_out1 <- ggplot(er_visits_gender, aes(y = visits, x = gender)) +
 geom_boxplot()

er_no_out2 <- ggplot(er_visits_gender, aes(y = visits, x = gender)) +
 geom_boxplot(outlier.shape = NA) +
 ylim(0,40)

/

Tip - NA Values

if it is a numeric value it will just get dropped from the graph and you will see
a warning

it is categorical you will see it on the graph and will need to filter to remove
the NA category

·

·

icecream <-tibble(flavor =

 rep(c("chocolate", "vanilla", NA,"chocolate", "vanilla"), 8))

icecream1 <- ggplot(icecream, aes(x = flavor)) + geom_bar() +

 theme(text=element_text(size=24))

icecream2 <- icecream %>% drop_na(flavor) %>%

 ggplot(aes(x = flavor)) + geom_bar() +

 theme(text=element_text(size=24))

/

Extensions

directlabels package

Great for adding labels directly onto plots https://www.opencasestudies.org/ocs-
bp-co2-emissions/

#install.packages("directlabels")
library(directlabels)
direct.label(lots_of_lines, method = list("angled.boxes"))

/

https://www.opencasestudies.org/ocs-bp-co2-emissions/
https://www.opencasestudies.org/ocs-bp-co2-emissions/

patchwork package

Great for combining plots together

Also check out the patchwork package

#install.packages("patchwork")
library(patchwork)
(plt1 + plt2)/plt2

/

https://patchwork.data-imaginist.com/

