
Data Summarization

Recap

�Cheatsheet

select(): subset and/or reorder columns

filter(): remove rows

arrange(): reorder rows

mutate(): create new columns or modify them

select() and filter() can be combined together

remove a column: select() with ! mark (!col_name)

you can do sequential steps: especially using pipes %>%

·

·

·

·

·

·

·

2/35

https://daseh.org/modules/cheatsheets/Day-3.pdf

Another Cheatsheet

https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-
transformation.pdf

3/35

https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-transformation.pdf

Data Summarization

Basic statistical summarization·

mean(x): takes the mean of x

sd(x): takes the standard deviation of x

median(x): takes the median of x

quantile(x): displays sample quantiles of x. Default is min, IQR, max

range(x): displays the range. Same as c(min(x), max(x))

sum(x): sum of x

max(x): maximum value in x

min(x): minimum value in x

-

-

-

-

-

-

-

-

4/35

Some examples

We can use the CO_heat_ER object from the dasehr package to explore different
ways of summarizing data. (This dataset contains information about the number
and rate of visits for heat-related illness to ERs in Colorado from 2011-2022,
adjusted for age.) The head command displays the first rows of an object:

library(dasehr)
head(CO_heat_ER)

A tibble: 6 × 7
 county rate lower95cl upper95cl visits year gender
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 Statewide 5.64 4.70 6.59 140 2011 Female
2 Statewide 7.39 6.30 8.47 183 2011 Male
3 Statewide 6.51 5.80 7.23 323 2011 Both genders
4 Statewide 5.64 4.72 6.57 146 2012 Female
5 Statewide 7.56 6.48 8.65 193 2012 Male
6 Statewide 6.58 5.88 7.29 339 2012 Both genders

5/35

Behavior of pull() function

pull() converts a single data column into a vector. This allows you to run
summary functions.

CO_heat_ER %>% pull(visits)

6/35

Statistical summarization the “tidy” way

Add the na.rm = argument for missing data

CO_heat_ER %>% pull(visits) %>% mean()

[1] NA

CO_heat_ER %>% pull(visits) %>% mean(na.rm=T)

[1] 9.791114

7/35

Summarization on tibbles (data
frames)

Summarize the data: dplyr summarize() function

summarize creates a summary table.

Multiple summary statistics can be calculated at once (unlike pull() which can
only do a single calculation on one column).

General format - Not the code!
{data to use} %>%
 summarize({summary column name} = {function(source column)},
 {summary column name} = {function(source column)})

9/35

Summarize the data: dplyr summarize() function

CO_heat_ER %>%
 summarize(mean_visits = mean(visits))

A tibble: 1 × 1
 mean_visits
 <dbl>
1 NA

CO_heat_ER %>%
 summarize(mean_visits = mean(visits, na.rm = TRUE))

A tibble: 1 × 1
 mean_visits
 <dbl>
1 9.79

10/35

Summarize the data: dplyr summarize() function

summarize() can do multiple operations at once. Just separate by a comma.

CO_heat_ER %>%
 summarize(mean_visits = mean(visits, na.rm = TRUE),
 median_visits = median(visits, na.rm = TRUE),
 mean_rate = mean(rate, na.rm = TRUE))

A tibble: 1 × 3
 mean_visits median_visits mean_rate
 <dbl> <dbl> <dbl>
1 9.79 0 1.87

11/35

Summarize the data: dplyr summarize() function

Note that summarize() creates a separate tibble from the original data.

If you want to save a summary statistic in the original data, use mutate()
instead to create a new column for the summary statistic.

12/35

summary() Function

Using summary() can give you rough snapshots of each numeric column
(character columns are skipped):

summary(CO_heat_ER)

 county rate lower95cl upper95cl
 Length:2340 Min. : 0.000 Min. : 0.000 Min. : 0.000
 Class :character 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
 Mode :character Median : 0.000 Median : 0.000 Median : 0.000
 Mean : 1.869 Mean : 1.119 Mean : 2.755
 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
 Max. :89.275 Max. :43.398 Max. :151.420
 NA's :832 NA's :832 NA's :832
 visits year gender
 Min. : 0.000 Min. :2011 Length:2340
 1st Qu.: 0.000 1st Qu.:2014 Class :character
 Median : 0.000 Median :2016 Mode :character
 Mean : 9.791 Mean :2016
 3rd Qu.: 0.000 3rd Qu.:2019
 Max. :494.000 Max. :2022
 NA's :832

13/35

Summary & Lab Part 1

� Class Website

� Lab

summary stats (mean()) work with pull()

don’t forget the na.rm = TRUE argument!

summary(x): quantile information

summarize: creates a summary table of columns of interest

·

·

·

·

14/35

https://daseh.org/
https://daseh.org/modules/Data_Summarization/lab/Data_Summarization_Lab.Rmd

distinct() values

distinct(x) will return the unique elements of column x.

CO_heat_ER %>%
 distinct(gender)

A tibble: 3 × 1
 gender
 <chr>
1 Female
2 Male
3 Both genders

15/35

How many distinct() values?

n_distinct() tells you the number of unique elements. Must pull the column
first!

CO_heat_ER %>%
 pull(gender) %>%
 n_distinct()

[1] 3

16/35

dplyr: count

Use count to return row count by category.

CO_heat_ER %>% count(gender)

A tibble: 3 × 2
 gender n
 <chr> <int>
1 Both genders 780
2 Female 780
3 Male 780

17/35

dplyr: count

Multiple columns listed further subdivides the count.

CO_heat_ER %>% count(county, gender)

A tibble: 195 × 3
 county gender n
 <chr> <chr> <int>
 1 Adams Both genders 12
 2 Adams Female 12
 3 Adams Male 12
 4 Alamosa Both genders 12
 5 Alamosa Female 12
 6 Alamosa Male 12
 7 Arapahoe Both genders 12
 8 Arapahoe Female 12
 9 Arapahoe Male 12
10 Archuleta Both genders 12
� 185 more rows

18/35

Grouping

Perform Operations By Groups: dplyr

group_by allows you group the data set by variables/columns you specify:

CO_heat_ER_grouped <- CO_heat_ER %>% group_by(gender)
CO_heat_ER_grouped

A tibble: 2,340 × 7
Groups: gender [3]
 county rate lower95cl upper95cl visits year gender
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
 1 Statewide 5.64 4.70 6.59 140 2011 Female
 2 Statewide 7.39 6.30 8.47 183 2011 Male
 3 Statewide 6.51 5.80 7.23 323 2011 Both genders
 4 Statewide 5.64 4.72 6.57 146 2012 Female
 5 Statewide 7.56 6.48 8.65 193 2012 Male
 6 Statewide 6.58 5.88 7.29 339 2012 Both genders
 7 Statewide 4.94 4.06 5.82 124 2013 Female
 8 Statewide 6.72 5.72 7.72 178 2013 Male
 9 Statewide 5.82 5.16 6.49 302 2013 Both genders
10 Statewide 3.52 2.80 4.25 92 2014 Female
� 2,330 more rows

20/35

Summarize the grouped data

It’s grouped! Grouping doesn’t change the data in any way, but how functions
operate on it. Now we can summarize visits by group:

CO_heat_ER_grouped %>%
 summarize(avg_visits = mean(visits, na.rm = TRUE))

A tibble: 3 × 2
 gender avg_visits
 <chr> <dbl>
1 Both genders 16.3
2 Female 4.77
3 Male 9.00

21/35

Use the pipe to string these together!

Pipe CO_heat_ER into group_by, then pipe that into summarize:

CO_heat_ER %>%
 group_by(gender) %>%
 summarize(avg_visits = mean(visits, na.rm = TRUE))

A tibble: 3 × 2
 gender avg_visits
 <chr> <dbl>
1 Both genders 16.3
2 Female 4.77
3 Male 9.00

22/35

Group by as many variables as you want

group_by gender and year:

CO_heat_ER %>%
 group_by(year, gender) %>%
 summarize(avg_visits = mean(visits, na.rm = TRUE))

A tibble: 36 × 3
Groups: year [12]
 year gender avg_visits
 <dbl> <chr> <dbl>
 1 2011 Both genders 11.3
 2 2011 Female 4.32
 3 2011 Male 6.06
 4 2012 Both genders 12.8
 5 2012 Female 4.76
 6 2012 Male 6.71
 7 2013 Both genders 12.4
 8 2013 Female 3.72
 9 2013 Male 6.11
10 2014 Both genders 9.67
� 26 more rows

23/35

Counting

There are other functions, such as n() count the number of observations (NAs
included).

CO_heat_ER %>%
 group_by(gender) %>%
 summarize(n = n(),
 mean = mean(visits, na.rm = TRUE))

A tibble: 3 × 3
 gender n mean
 <chr> <int> <dbl>
1 Both genders 780 16.3
2 Female 780 4.77
3 Male 780 9.00

24/35

Counting

count() and n() can give very similar information.

CO_heat_ER %>% count(gender)

A tibble: 3 × 2

 gender n

 <chr> <int>

1 Both genders 780

2 Female 780

3 Male 780

CO_heat_ER %>% group_by(gender) %>% summarize(n()) # n() typically used with summarize

A tibble: 3 × 2

 gender `n()`

 <chr> <int>

1 Both genders 780

2 Female 780

3 Male 780

25/35

A few miscellaneous topics ..

Base R functions you might see: length and unique

These functions require a column as a vector using pull().

CO_heat_ER_gen <- CO_heat_ER %>% pull(gender) # pull() to make a vector
CO_heat_ER_gen %>% unique() # similar to distinct()

[1] "Female" "Male" "Both genders"

27/35

Base R functions you might see: length and unique

These functions require a column as a vector using pull().

CO_heat_ER_gen %>% unique() %>% length() # similar to n_distinct()

[1] 3

28/35

* New! * Many dplyr functions now have a .by= argument

Pipe CO_heat_ER into group_by, then pipe that into summarize:

is the same as..

CO_heat_ER %>%
 group_by(gender) %>%
 summarize(avg_visits = mean(visits, na.rm = TRUE),
 max_visits = max(visits, na.rm = TRUE))

CO_heat_ER %>%
 summarize(avg_visits = mean(visits, na.rm = TRUE),
 max_visits = max(visits, na.rm = TRUE),
 .by = county)

29/35

summary() vs. summarize()

summary() (base R) gives statistics table on a dataset.

summarize() (dplyr) creates a more customized summary tibble/dataframe.

·

·

30/35

Summary & Lab Part 2

� Class Website

� Lab

count(x): what unique values do you have?

group_by(): changes all subsequent functions

summarize() with n() gives the count (NAs included)

·

distinct(): what are the distinct values?

n_distinct() with pull(): how many distinct values?

-

-

·

combine with summarize() to get statistics per group

combine with mutate() to add column

-

-

·

31/35

https://daseh.org/
https://daseh.org/modules/Data_Summarization/lab/Data_Summarization_Lab.Rmd

Extra Slides: More advanced
summarization

Data Summarization on data frames

Statistical summarization across the data frame·

rowMeans(x): takes the means of each row of x

colMeans(x): takes the means of each column of x

rowSums(x): takes the sum of each row of x

colSums(x): takes the sum of each column of x

-

-

-

-

yearly_co2 <- yearly_co2_emissions

33/35

rowMeans() example

Get means for each row.

Let’s see what the mean CO2 emissions is across years for each row (country):

yearly_co2 %>%
 select(starts_with("201")) %>%
 rowMeans(na.rm = TRUE) %>%
 head(n = 5)

[1] 10254 5106 129800 487 32040

yearly_co2 %>%
 group_by(country) %>%
 summarize(mean = rowMeans(across(starts_with("201")), na.rm = TRUE)) %>%
 head(n = 5)

A tibble: 5 × 2
 country mean
 <chr> <dbl>
1 Afghanistan 10254
2 Albania 5106
3 Algeria 129800
4 Andorra 487
5 Angola 32040

34/35

colMeans() example

Get means for each column.

Let’s see what the mean is across each column (year):

yearly_co2 %>%
 select(starts_with("201")) %>%
 colMeans(na.rm = TRUE) %>%
 head(n = 5)

 2010 2011 2012 2013 2014
165334.1 171764.9 174033.4 174856.2 175992.5

yearly_co2 %>%
 summarize(across(starts_with("201"), ~mean(.x, na.rm = TRUE)))

A tibble: 1 × 5
 `2010` `2011` `2012` `2013` `2014`
 <dbl> <dbl> <dbl> <dbl> <dbl>
1 165334. 171765. 174033. 174856. 175993.

35/35

