Data Summarization

Recap

select(): subset and/or reorder columns

- filter(): remove rows

- arrange(): reorder rows

- mutate(): create new columns or modify them
select() and filter () can be combined together
remove a column: select() with ! mark (!col_name)

+ you can do sequential steps: especially using pipes %>%

0 Cheatsheet

2/35

https://daseh.org/modules/cheatsheets/Day-3.pdf

Another Cheatsheet

https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-

transformation.pdf

Data transformation with dplyr : : cHEAT SHEET

dplyr functions work with pipes and expect tidy data. In tidy data:

>

y pipes

Each variable isin Each observation, or X %>% f(y)
its own column case, isinitsownrow becomes f(x,y)

Apply summary functions to columns to create a new table of

summary statistics. Summary functions take vectors as input and

return one value (see back).
summary function

_ W summarise(.data, ...)
Compute table of summaries.
summarise(mtcars, avg = mean{mpg))

count(.data, ..., wt = NULL, sort = FALSE, name =

_, @ NULL) Count number of rows in each group
defined by the variablesin ... Also tally().
count(mtcars, cyl)

Use group_by(.data, ..., .add = FALSE, .drop = TRUE) to create a
"grouped" copy of a table grouped by columns in ... dplyr
functions will manipulate each "group" separately and combine
the results.

M mtcars %>%
-» -» group_by(cyl) %>%
u summamseévg: mean(mpg))

EXTRACT CASES
Row functions return a subset of rows as a new table.

> filter(.data, ..., .preserve = FALSE) Extract rows
that meet logical criteria.
filter(mtcars, mpg>20)

distinct(.data, ..., .keep_all = FALSE) Remove
rows with duplicate values.
distinct(mtcars, gear)

slice(.data, ..., .preserve = FALSE) Select rows
by position.
slice(mtcars, 10:15)

slice_sample(.data, ..., n, prop, weight_by =
NULL, replace = FALSE) Randomly select rows.
Use n to select a number of rows and prop to
select a fraction of rows.

slice_sample(mtcars, n = 5, replace = TRUE)

slice_min(.data, order_by, ..., n, pro

with_ties = TRUE) and slice_max() Select rows
with the lowest and highest values.
slice_min(mtcars, mpg, prop =0.25)

slice_head(.data, ..., n, prop) and slice_tail()
Select the first or last rows.
slice_head(mtcars, n=5)

Logical and boolean operators to use with filter()
== < <= is.na() %in% | xor()
I= > >= lis.na() ! &

See ?base::Logic and ?Comparison for help.

ARRANGE CASES

EXTRACT VARIABLES
Column functions return a set of columns as a new vector or table.

pull(.data, var=-1, name=NULL, ...) Extract
- column values as a vector, by name or index.
pullimtcars, wt)

> select(.data, ...) Extract columns as a table.
select{mtears, mpg, wt)

relocate(.data, ..., .before = NULL, .after = NULL)
- Move columns to new position.
relocate(mtcars, mpg, cyl, .after = last_col()

Use these helpers with select() and across()
e.g. select(mtcars, mpg:cyl)

contains(match) num_range(prefix, range) : e.g. mpg:cyl
ends_with(match) all_of(x)/any_of(x, ..., vars) -, e.g, -gear
starts_with(match) matches(match) everything()

MANIPULATE MULTIPLE VARIABLES AT ONCE

L across(.cols, .funs, ..., .names = NULL) Summarise
B or mutate multiple columns in the same way.
summarise(mtcars, across(everything(), mean))

_’l ¢_across(.cols) Compute across columns in
row-wise data.
] transmute(rowwise(UKgas), total = sumi{c_across(1:2)))

MAKE NEW VARIABLES

Apply vectorized functions to columns. Vectorized functions take
vectors as input and return vectors of the same length as output

(coo harld

3/35

https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-transformation.pdf

Data Summarization

Basic statistical summarization

mean(x): takes the mean of x

- sd(x): takes the standard deviation of x

- median(x): takes the median of x

- quantile(x): displays sample quantiles of x. Default is min, IQR, max
- range(x): displays the range. Same as c(min(x), max(x))

- sum(x): sum of x

- max(x): maximum value in x

- min(x): minimum value in x

4/35

Some examples

We can use the CO_heat_ER object from the dasehr package to explore different
ways of summarizing data. (This dataset contains information about the number

and rate of visits for heat-related illness to ERs in Colorado from 2011-2022,
adjusted for age.) The head command displays the first rows of an object:

library(dasehr)

head(CO_heat_ER)

A tibble:

OO0k, WNBE

county
<chr>
Statewide
Statewide
Statewide
Statewide
Statewide
Statewide

6 x 7
rate
<dbl>

5.
.39
.51
.64
.56
.58

O ~N oo N

64

lower95cl upper95cl visits
<dbl>

<dbl>
4.70
6.30
5.80
4.72
6.48
5.88

6.
A7
.23
.57
.65
.29

~N 00 O N 00

59

<dbl>
140
183
323
146
193
339

year
<dbl>
2011
2011
2011
2012
2012
2012

gender

<chr>

Female

Male

Both genders
Female

Male

Both genders

5/35

Behavior of pull() function

pull() converts a single data column into a vector. This allows you to run
summary functions.

CO_heat_ER %>% pull(visits)

6/35

Statistical summarization the “tidy” way

Add the na.rm = argument for missing data
CO_heat_ER %>% pull(visits) %>% mean()

[1] NA

CO_heat_ER %>% pull(visits) %>% mean(na.rm=T)

[1] 9.791114

7/35

Summarization on tibbles (data
frames)

Summarize the data: dplyr summarize() function

summarize creates a summary table.

Multiple summary statistics can be calculated at once (unlike pull() which can
only do a single calculation on one column).

General format - Not the code!
{data to use} %%
summarize({summary column name} = {function(source column)},
{summary column name} = {function(source column)})

9/35

Summarize the data: dplyr summarize() function

CO_heat_ER %>%
summarize(mean_visits = mean(visits))

A tibble: 1 x 1
mean_visits
<dbl>
1 NA

CO_heat_ER %>%
summarize(mean_visits = mean(visits, na.rm = TRUE))

A tibble: 1 x 1
mean_visits
<dbl>
1 9.79

10/35

Summarize the data: dplyr summarize() function

summarize () can do multiple operations at once. Just separate by a comma.

CO_heat_ER %>%
summarize(mean_visits = mean(visits, na.rm = TRUE),
median_visits = median(visits, na.rm = TRUE),
mean_rate = mean(rate, na.rm = TRUE))

A tibble: 1 x 3
mean_visits median_visits mean_rate
<dbl> <dbl> <dbl>
1 9.79 0] 1.87

11/35

Summarize the data: dplyr summarize() function

Note that summarize () creates a separate tibble from the original data.

If you want to save a summary statistic in the original data, use mutate()
instead to create a new column for the summary statistic.

12/35

summary () Function

Using summary () can give you rough snapshots of each numeric column
(character columns are skipped):

summary (CO_heat_ER)

county rate lower95cl upper9scl
Length:2340 Min. : 0.000 Min. : 0.000 Min. : 0.000
Class :character 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
Mode :character Median : 0.000 Median : 0.000 Median : 0.000
Mean : 1.869 Mean » 1.119 Mean : 2.755
3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
Max. :89.275 Max. :43.398 Max. :151.420
NA's : 832 NA's : 832 NA's : 832
visits year gender
Min. : 0.000 Min. 12011 Length:2340

1st Qu.: 0.000 1st Qu.:2014 Class :character
Median : 0.000 Median :2016 Mode :character

Mean : 9.791 Mean : 2016
3rd Qu.: 0.000 3rd Qu.:2019
Max. : 494,000 Max. : 2022

NA's 1832

13/35

Summary & Lab Part 1

+ summary stats (mean()) work with pull()
- don't forget the na.rm = TRUE argument!
summary (x): quantile information

summarize: creates a summary table of columns of interest

0 Class Website

0 Lab

14/35

https://daseh.org/
https://daseh.org/modules/Data_Summarization/lab/Data_Summarization_Lab.Rmd

distinct () values

distinct(x) will return the unique elements of column x.

CO_heat_ER %>%
distinct(gender)

A tibble: 3 x 1
gender
<chr>

1 Female

2 Male

3 Both genders

15/35

How many distinct () values?

n_distinct() tells you the number of unique elements. Must pull the column
first!

CO_heat_ER %>%
pull(gender) %%
n_distinct()

[1] 3

16/35

dplyr: count
Use count to return row count by category.

CO_heat_ER %>% count(gender)

A tibble: 3 x 2

gender n
<chr> <int>
1 Both genders 780
2 Female 780

3 Male 780

17/35

dplyr: count
Multiple columns listed further subdivides the count.

CO_heat_ER %>% count(county, gender)

A tibble: 195 x 3

county gender n
<chr> <chr> <int>

1 Adams Both genders 12
2 Adams Female 12
3 Adams Male 12
4 Alamosa Both genders 12
5 Alamosa Female 12
6 Alamosa Male 12
7 Arapahoe Both genders 12
8 Arapahoe Female 12
9 Arapahoe Male 12
10 Archuleta Both genders 12

[185 more rows

18/35

Grouping

Perform Operations By Groups: dplyr

group_by allows you group the data set by variables/columns you specify:

CO_heat_ER_grouped <- CO_heat_ER %>% group_by(gender)
CO_heat_ER_grouped

A tibble: 2,340 x 7
Groups: gender [3]

county rate lower95cl upper95cl visits year gender
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 Statewide 5.64 4.70 6.59 140 2011 Female
2 Statewide 7.39 6.30 8.47 183 2011 Male
3 Statewide 6.51 5.80 7.23 323 2011 Both genders
4 Statewide 5.64 4,72 6.57 146 2012 Female
5 Statewide 7.56 6.48 8.65 193 2012 Male
6 Statewide 6.58 5.88 7.29 339 2012 Both genders
7 Statewide 4.94 4,06 5.82 124 2013 Female
8 Statewide 6.72 5.72 7.72 178 2013 Male
9 Statewide 5.82 5.16 6.49 302 2013 Both genders
10 Statewide 3.52 2.80 4,25 92 2014 Female

0 2,330 more rows

20/35

Summarize the grouped data

It's grouped! Grouping doesn’t change the data in any way, but how functions
operate on it. Now we can summarize visits by group:

CO_heat_ER_grouped %>%
summarize(avg_visits = mean(visits, na.rm = TRUE))

A tibble: 3 x 2

gender avg_visits

<chr> <dbl>
1 Both genders 16.3
2 Female 4.77

3 Male 9.00

21/35

Use the pipe to string these together!

Pipe CO_heat_ER into group_by, then pipe that into summarize:

CO_heat_ER %>%
group_by(gender) %>%
summarize(avg_visits = mean(visits, na.rm = TRUE))

A tibble: 3 x 2

gender avg_visits

<chr> <dbl>
1 Both genders 16.3
2 Female 4.77

3 Male 9.00

22/35

Group by as many variables as you want
group_by gender and year:

CO_heat_ER %>%
group_by(year, gender) %>%

summarize(avg_visits = mean(visits, na.rm = TRUE))

A tibble: 36 x 3

Groups:

year
<dbl>
2011
2011
2011
2012
2012
2012
2013
2013
2013
2014

CQOWoo~NOOOLD,WNLE

* B
—

year [12]
gender
<chr>
Both genders
Female
Male
Both genders
Female
Male
Both genders
Female
Male
Both genders

26 more rows

avg_visits
<dbl>

11
4

.3
.32
.06
.8
. 76
71
4
(2
11
.67

23/35

Counting

There are other functions, such as n() count the number of observations (NAs
included).

CO_heat_ER %>%
group_by(gender) %%
summarize(n = n(),
mean = mean(visits, na.rm = TRUE))

A tibble: 3 x 3

gender n mean

<chr> <int> <dbl>
1 Both genders 780 16.3
2 Female 780 4.77

3 Male 780 9.00

24/35

Counting

count () and n() can give very similar information.

CO_heat_ER %>% count(gender)

A tibble: 3 x 2

gender n
<chr> <int>
1 Both genders 780
2 Female 780
3 Male 780

CO_heat_ER %>% group_by(gender) %>% summarize(n()) # n() typically used with summarize

A tibble: 3 x 2

gender n()"
<chr> <int>
1 Both genders 780
2 Female 780
3 Male 780

25/35

A few miscellaneous topics ..

Base R functions you might see: 1length and unique

These functions require a column as a vector using pull().

CO_heat_ER_gen <- CO_heat_ER %>% pull(gender) # pull() to make a vector
CO_heat_ER_gen %>% unique() # similar to distinct()

[1] "Female" "Male" "Both genders"

27/35

Base R functions you might see: 1length and unique

These functions require a column as a vector using pull().

CO_heat_ER_gen %>% unique() %% length() # similar to n_distinct()

[1] 3

28/35

* New! * Many dplyr functions now have a .by=argument

Pipe CO_heat_ER into group_by, then pipe that into summarize:

CO_heat_ER %>%
group_by(gender) %%
summarize(avg_visits

max_visits

mean(visits, na.rm = TRUE),
max(visits, na.rm = TRUE))

is the same as..

CO_heat_ER %>%
summarize(avg_visits = mean(visits, na.rm = TRUE),
max_visits = max(visits, na.rm = TRUE),
.by = county)

29/35

summary () vs. summarize()

summary () (base R) gives statistics table on a dataset.

summarize () (dplyr) creates a more customized summary tibble/dataframe.

30/35

Summary & Lab Part 2

+count(x): what unique values do you have?
- distinct(): what are the distinct values?
- n_distinct() with pull(): how many distinct values?
-+ group_by(): changes all subsequent functions
- combine with summarize() to get statistics per group
- combine with mutate() to add column

+ summarize() with n() gives the count (NAs included)

0 Class Website

0 Lab

31/35

https://daseh.org/
https://daseh.org/modules/Data_Summarization/lab/Data_Summarization_Lab.Rmd

Extra Slides: More advanced
summarization

Data Summarization on data frames

- Statistical summarization across the data frame

rowMeans (x): takes the means of each row of x
colMeans(x): takes the means of each column of x
rowSums (x): takes the sum of each row of x

colSums(x): takes the sum of each column of x

yearly co2 <- yearly_co2_emissions

33/35

rowMeans () example
Get means for each row.

Let's see what the mean CO2 emissions is across years for each row (country):

yearly_co2 %%
select(starts_with("201")) %%
rowMeans(na.rm = TRUE) %>%

[1] 10254 5106 129800

head(n = 5)

yearly_co2 %%

ga b wWwNPRE

group_by(country) %%
summarize(mean = rowMeans(across(starts_with('"201")), na.rm = TRUE)) %>%

head(n = 5)

A tibble: 5 x 2
country mean
<chr> <dbl>
Afghanistan 10254
Albania 5106
Algeria 129800
Andorra 487
Angola 32040

487 32040

34/35

colMeans() example
Get means for each column.

Let's see what the mean is across each column (year):

yearly_co2 %%
select(starts_with("201")) %%
colMeans(na.rm = TRUE) %>%
head(n = 5)

2010 2011 2012 2013 2014
165334.1 171764.9 17/4033.4 174856.2 175992.5

yearly co2 %%
summarize(across(starts_with("201"), ~mean(.x, na.rm = TRUE)))

A tibble: 1 x 5
"2010° 20117 20127 2013 2014
<dbl> <dbl> <dbl> <dbl> <dbl>
1 165334. 171765. 174033. 174856. 175993.

35/35

