
Data Classes

One dimensional vectors

Character and numeric

We have already covered character and numeric types.

class(c("tree", "cloud", "stars_&_sky"))

[1] "character"

class(c(1, 4, 7))

[1] "numeric"

3/38

Character and numeric

Character predominates if there are mixed classes.

class(c(1, 2, "tree"))

[1] "character"

class(c("1", "4", "7"))

[1] "character"

4/38

Logical

logical is a type that only has two possible elements: TRUE and FALSE

logical elements are NOT in quotes.

x <- c(TRUE, FALSE, TRUE, TRUE, FALSE)
class(x)

[1] "logical"

5/38

General Class Information

There is one useful functions associated with practically all R classes:

as.CLASS_NAME(x) coerces between classes. It turns x into a certain class.

Examples:

as.numeric()

as.character()

as.logical()

·

·

·

6/38

Coercing: seamless transition

Sometimes coercing works great!

as.character(4)

[1] "4"

as.numeric(c("1", "4", "7"))

[1] 1 4 7

as.logical(c("TRUE", "FALSE", "FALSE"))

[1] TRUE FALSE FALSE

as.logical(0)

[1] FALSE

7/38

Coercing: not-so-seamless

When interpretation is ambiguous, R will return NA (an R constant representing
“Not Available” i.e. missing value)

as.numeric(c("1", "4", "7a"))

Warning: NAs introduced by coercion

[1] 1 4 NA

as.logical(c("TRUE", "FALSE", "UNKNOWN"))

[1] TRUE FALSE NA

8/38

Number Subclasses

There are two major number subclasses or types

1. Double (1.003)

2. Integer (1)

9/38

Number Subclasses

Double is equivalent to numeric. It is a number that contains fractional values .
Can be any amount of places after the decimal.

Double stands for double-precision

For most purposes, the difference between integers and doubles doesn’t matter.

10/38

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Significant figures and other formats

The num function of the tibble package can be used to change format. See here
for more: https://tibble.tidyverse.org/articles/numbers.html

11/38

https://tibble.tidyverse.org/articles/numbers.html

Factors

A factor is a special character vector where the elements have pre-defined
groups or ‘levels’. You can think of these as qualitative or categorical variables.
Order is often important.

Examples:

** We will learn more about factors in a later module. **

red, orange, yellow, green, blue, purple

breakfast, lunch, dinner

baby, toddler, child, teen, adult

Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree

beginner, novice, intermediate, expert

·

·

·

·

·

12/38

Classes Overview

Example Class Type Notes

1.1 Numeric double default for
numbers

1 integer integer

Need to coerce
to integer with
as.integer() or
use sample() or
seq() with whole
numbers

“FALSE”, “Ball” Character Character Need quotes

FALSE, TRUE logical logical No quotes

“Small”, “Large” Factor Factor
Need to coerce
to factor with
factor()

13/38

Special data classes

Dates

There are two most popular R classes used when working with dates and times:

We convert data from character to Date/POSIXct to use functions to manipulate
date/date and time

lubridate is a powerful, widely used R package from “tidyverse” family to work
with Date / POSIXct class objects

Date class representing a calendar date

POSIXct class representing a calendar date with hours, minutes, seconds

·

·

15/38

Creating Date class object

Note for function ymd: year month day

class("2021-06-15")

[1] "character"

library(lubridate)

x <- ymd("2021-06-15") # lubridate package Year Month Day
class(x)

[1] "Date"

16/38

Dates are useful!

a <- ymd("2021-06-15")
b <- ymd("2021-06-18")
a - b

Time difference of -3 days

17/38

The function matches the format

mdy("06/15/2021")

[1] "2021-06-15"

dmy("15-June-2021")

[1] "2021-06-15"

ymd("2021-06-15")

[1] "2021-06-15"

18/38

Class conversion in with a dataset

library(dasehr)
covidww <- covid_wastewater %>% select(contains("date"))

head(covidww)

A tibble: 6 × 3
date_start date_end first_sample_date
<chr> <chr> <chr>
1 6/21/2020 7/5/2020 7/5/2020
2 6/22/2020 7/6/2020 7/5/2020
3 6/23/2020 7/7/2020 7/5/2020
4 6/24/2020 7/8/2020 7/5/2020
5 6/25/2020 7/9/2020 7/5/2020
6 6/26/2020 7/10/2020 7/5/2020

19/38

Class conversion in with a dataset

We would need to use mutate to help us modify that column.

covidww %>%
 mutate(date_start = mdy(date_start))

A tibble: 776,059 × 3
date_start date_end first_sample_date
<date> <chr> <chr>
1 2020-06-21 7/5/2020 7/5/2020
2 2020-06-22 7/6/2020 7/5/2020
3 2020-06-23 7/7/2020 7/5/2020
4 2020-06-24 7/8/2020 7/5/2020
5 2020-06-25 7/9/2020 7/5/2020
6 2020-06-26 7/10/2020 7/5/2020
7 2020-06-27 7/11/2020 7/5/2020
8 2020-06-28 7/12/2020 7/5/2020
9 2020-06-29 7/13/2020 7/5/2020
10 2020-06-30 7/14/2020 7/5/2020
� 776,049 more rows

20/38

Other two-dimensional data classes

Two-dimensional data classes

Two-dimensional classes are those we would often use to store data read from a
file

a data frame (data.frame or tibble class)

a matrix (matrix class)

·

·

also composed of rows and columns

unlike data.frame or tibble, the entire matrix is composed of one R
class

for example: all entries are numeric, or all entries are character

-

-

-

22/38

Lists

One other data type that is the most generic are lists.

Can hold vectors, strings, matrices, models, list of other list!

Lists are used when you need to do something repeatedly across lots of data -
for example wrangling several similar files at once

Lists are a bit more advanced but you may encounter them when you work
with others or look up solutions

·

·

·

·

23/38

Making Lists

Can be created using list()·

mylist <- list(c("A", "b", "c"), c(1, 2, 3))
mylist

[[1]]
[1] "A" "b" "c"

[[2]]
[1] 1 2 3

class(mylist)

[1] "list"

24/38

Summary

two dimensional object classes include: data frames, tibbles, matrices, and
lists

matrix has columns and rows but is all one data class

lists can contain multiples of any other class of data including lists!

calendar dates can be represented with the Date class using ymd(), mdy()
functions from lubridate package

Make sure you choose the right function for the way the date is formatted!

POSIXct class representing a calendar date with hours, minutes, seconds. Can
use ymd_hms() or ymd_hm() or ymd_h()functions from the lubridate
package

can then easily subtract Date or POSIXct class variables or pull out aspects
like year

·

·

·

·

·

·

·

25/38

https://lubridate.tidyverse.org/

Lab Part 1

� Class Website

� Lab

Image by Gerd Altmann from Pixabay

26/38

https://daseh.org/
https://daseh.org/modules//Data_Classes/lab/Data_Classes_Lab.Rmd
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

Extra Slides

Matrices

as.matrix() creates a matrix from a data frame or tibble (where all values are
the same class).

covidww_mat <- select(covidww, contains("Missouri")) %>%
 head(n = 3)
covidww_mat

A tibble: 3 × 0

as.matrix(covidww_mat)

[1,]
[2,]
[3,]

28/38

Matrices

matrix() creates a matrix from scratch.

matrix(1:6, ncol = 2)

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

29/38

More about Lists

List elements can be named

mylist_named <- list(
 letters = c("A", "b", "c"),
 numbers = c(1, 2, 3),
 one_matrix = matrix(1:4, ncol = 2)
)
mylist_named

$letters
[1] "A" "b" "c"

$numbers
[1] 1 2 3

$one_matrix
[,1] [,2]
[1,] 1 3
[2,] 2 4

30/38

Some useful functions from lubridate to manipulate Date objects

x <- ymd(c("2021-06-15", "2021-07-15"))
x

[1] "2021-06-15" "2021-07-15"

day(x) # see also: month(x) , year(x)

[1] 15 15

x + days(10)

[1] "2021-06-25" "2021-07-25"

x + months(1) + days(10)

[1] "2021-07-25" "2021-08-25"

wday(x, label = TRUE)

[1] Tue Thu
Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

31/38

Some useful functions from lubridate to manipulate POSIXct objects

x <- ymd_hms("2013-01-24 19:39:07")
x

[1] "2013-01-24 19:39:07 UTC"

date(x)

[1] "2013-01-24"

x + hours(3)

[1] "2013-01-24 22:39:07 UTC"

floor_date(x, "1 hour") # see also: ceiling_date()

[1] "2013-01-24 19:00:00 UTC"

32/38

Differences in dates

Similar can be done with time (e.g. difference in hours).

x1 <- ymd(c("2021-06-15"))
x2 <- ymd(c("2021-07-15"))

difftime(x2, x1, units = "weeks")

Time difference of 4.285714 weeks

as.numeric(difftime(x2, x1, units = "weeks"))

[1] 4.285714

33/38

Data Selection

Matrices

n <- 1:9
n

[1] 1 2 3 4 5 6 7 8 9

mat <- matrix(n, nrow = 3)
mat

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

35/38

Vectors: data selection

To get element(s) of a vector (one-dimensional object):

Type the name of the variable and open the rectangular brackets []

In the rectangular brackets, type index (/vector of indexes) of element
(/elements) you want to pull. In R, indexes start from 1 (not: 0)

·

·

x <- c("a", "b", "c", "d", "e", "f", "g", "h")
x

[1] "a" "b" "c" "d" "e" "f" "g" "h"

x[2]

[1] "b"

x[c(1, 2, 100)]

[1] "a" "b" NA

36/38

Matrices: data selection

Note you cannot use dplyr functions (like select) on matrices. To subset matrix
rows and/or columns, use matrix[row_index, column_index].

mat

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

mat[1, 1] # individual entry: row 1, column 1

[1] 1

mat[1, 2] # individual entry: row 1, column 2

[1] 4

mat[1,] # first row

[1] 1 4 7

mat[, 1] # first column

[1] 1 2 3

mat[c(1, 2), c(2, 3)] # subset of original matrix: two rows and two columns37/38

Lists: data selection

You can reference data from list using $ (if elements are named) or using [[]]

mylist_named[[1]]

[1] "A" "b" "c"

mylist_named[["letters"]] # works only for a list with elements' names

[1] "A" "b" "c"

mylist_named$letters # works only for a list with elements' names

[1] "A" "b" "c"

38/38

