
Basic R

Explaining output on slides

In slides, a command (we’ll also call them code or a code chunk) will look like this

And then directly after it, will be the output of the code.
So class(3) is the code chunk and ‘[1] “numeric”’ is the output.

class(3)

[1] "numeric"

2/41

Running code chunks

Send code to run in the console:

Run the whole chunk with the green play button (top right of the chunk)

Run single line with +return or ctrl+return

·

·

3/41

R as a calculator

Note: when you enter your command in the Console, R inherently thinks you
want to print the result.

2 + 2

[1] 4

2 * 4

[1] 8

2^3

[1] 8

4/41

R as a calculator

The R console is a full calculator

Try to play around with it:

·

·

+, -, /, * are add, subtract, divide and multiply

^ or ** is power

parentheses – (and) – work with order of operations

%% finds the remainder

-

-

-

-

5/41

R as a calculator

2 + (2 * 3)^2

[1] 38

(1 + 3) / 2 + 45

[1] 47

6 / 2 * (1 + 2)

[1] 9

6/41

R as a calculator

Try evaluating the following:

2 + 2 * 3 / 4 -3

2 * 3 / 4 * 2

2^4 - 1

·

·

·

7/41

Commenting in Scripts

creates a comment in R code

In an .Rmd file, you can write notes outside the R chunks.

this is a comment

nothing to its right is evaluated

this # is still a comment
you can use many #'s as you want

1 + 2 # Can be the right of code

[1] 3

8/41

Assigning values to objects

You can create objects from within the R environment and from files on your
computer

R uses <- to assign values to an object name (you might also see = used, but
this is not best practice)

·

·

x <- 2
x

[1] 2

x * 4

[1] 8

x + 2

[1] 4

9/41

Assigning values to objects

The most comfortable and familiar class/data type for many of you will be
data.frame

You can think of these as essentially spreadsheets with rows (usually subjects
or observations) and columns (usually variables)

data.frames are somewhat advanced objects in R; we will start with simpler
objects

·

·

·

10/41

Assigning values to objects

Here we introduce “1 dimensional” classes; often referred to as ‘vectors’

Vectors can have multiple sets of observations, but each observation has to be
the same class.

Use the class() function to check the class of an object.

·

·

·

class(x)

[1] "numeric"

y <- "hello world!"
class(y)

[1] "character"

11/41

numeric vs. character classes?

We will talk in-depth about classes. For now:

numeric

character

Numbers

No quotation marks

·

·

2

Text with quotation marks

Green lettering (default)

·

·

"hello!"

12/41

Common issues

TROUBLESHOOTING: R is case sensitive

Object names are case-sensitive, i.e., X and x are different

x

[1] 2

X

Error in eval(expr, envir, enclos): object 'X' not found

14/41

TROUBLESHOOTING: No commas in big numbers

Commas separate objects in R, so they shouldn’t be used when entering big
numbers.

z <- 3,000

Error: <text>:1:7: unexpected ','
1: z <- 3,
 ^

15/41

TROUBLESHOOTING: Complete the statement

+ indicates an incomplete statement. Hit “esc” to clear and bring back the >.

10 /

Error: <text>:2:0: unexpected end of input
1: 10 /
 ^

16/41

Simple object practice

Try assigning your full name to an R object called name

17/41

Simple object practice

Try assigning your full name to an R object called name

name <- "Ava Hoffman"
name

[1] "Ava Hoffman"

18/41

The ‘combine’ function c()

The function c() collects/combines/joins single R objects into a vector of R
objects. It is mostly used for creating vectors of numbers, character strings, and
other data types.

x <- c(1, 4, 6, 8)
x

[1] 1 4 6 8

class(x)

[1] "numeric"

19/41

The ‘combine’ function c()

Try assigning your first and last name as 2 separate character strings into a
single vector called name2

20/41

The ‘combine’ function c()

Try assigning your first and last name as 2 separate character strings into a
length-2 vector called name2

name2 <- c("Ava", "Hoffman")
name2

[1] "Ava" "Hoffman"

21/41

Arguments inside R functions

The contents you give to an R function are called “arguments”

Here, R assumes all arguments should be objects contained in the vector

We will talk more about arguments as we use more complicated functions!

·

·

·

name2 <- c("Ava", "Hoffman")
Arg 1 ^^^^^

name2 <- c("Ava", "Hoffman")
Arg 2 ^^^^^^^^^

22/41

length of R objects

length(): Get or set the length of vectors (including lists) and factors, and of any
other R object for which a method has been defined.

length(x)

[1] 4

y

[1] "hello world!"

length(y)

[1] 1

23/41

length of R objects

What do you expect for the length of the name object? What about the name2
object?

What are the lengths of each?

24/41

length of R objects

What do you expect for the length of the name object? What about the name2
object?

What are the lengths of each?

length(name)

[1] 1

length(name2)

[1] 2

25/41

Math + vector objects

You can perform functions to entire vectors of numbers very easily.

x + 2

[1] 3 6 8 10

x * 3

[1] 3 12 18 24

x + c(1, 2, 3, 4)

[1] 2 6 9 12

26/41

Lab Part 1

 Lab

Assign values to objects with <- (new name on left side)

class() tells you the class (kind) of object

Use the c() function to combine text/numbers/etc. into a vector

Use the length() function to determine number of elements

·

·

·

·

27/41

https://daseh.org/modules/Basic_R/lab/Basic_R_Lab.Rmd

Pause for Day 1

Recap So Far

RStudio

RStudio Cheatsheet

The Editor is for static code like scripts or R Markdown documents

Send code to the Console to run it

The Console can be used for quickly testing code on the fly

R code goes within what is called a chunk (the gray box with a green play
button)

·

·

·

·

29/41

https://raw.githubusercontent.com/rstudio/cheatsheets/main/rstudio-ide.pdf

Recap So Far

Basic R

Use c() to combine vectors

Use <- to save (assign) values to objects

if you don’t use <- to reassign objects that you want to modify, they will stay
the same

length() and class() tell you information about an object

·

·

·

·

30/41

Math + vector objects

You can perform functions to entire vectors of numbers very easily.

x + 2

[1] 3 6 8 10

x * 3

[1] 3 12 18 24

x + c(1, 2, 3, 4)

[1] 2 6 9 12

31/41

Math + vector objects

But things like algebra can only be performed on numbers.

name2 + 4

Error in name2 + 4: non-numeric argument to binary operator

32/41

Reassigning to a new object

Save these modified vectors as a new vector called y.

Note that the R object y is no longer “hello world!” - It has been overwritten by
assigning new data to the same name.

y <- x + c(1, 2, 3, 4)
y

[1] 2 6 9 12

33/41

Reassigning to a new object

Reassigning allows you to make changes “in place”

results not stored:
x + c(1, 2, 3, 4)

x remains unchanged, results stored in `y`:
y <- x + c(1, 2, 3, 4)

replace `x` in place
x <- x + c(1, 2, 3, 4)

34/41

R objects

You can get more attributes than just class. The function str() gives you the
structure of the object.

This tells you that x is a numeric vector and tells you the length.

str(x)

 num [1:4] 1 4 6 8

str(y)

 num [1:4] 2 6 9 12

35/41

Lab Part 2

 Lab

Reassigning allows you to make changes “in place”

str() tells you a lot of information about an object in your environment

·

·

36/41

https://daseh.org/modules/Basic_R/lab/Basic_R_Lab.Rmd

Useful functions to create vectors seq()

For numeric: seq() can be very useful- both integer and double.
The from argument says what number to start on.
The to argument says what number to not go above.
The by argument says how much to increment by.
The length.out argument says how long the vector should be overall.

seq(from = 0, to = 1, by = 0.2)

[1] 0.0 0.2 0.4 0.6 0.8 1.0

seq(from = 0, to = 10, by = 1)

 [1] 0 1 2 3 4 5 6 7 8 9 10

seq(from = -5, to = 5, length.out = 10)

 [1] -5.0000000 -3.8888889 -2.7777778 -1.6666667 -0.5555556 0.5555556
 [7] 1.6666667 2.7777778 3.8888889 5.0000000

37/41

Useful functions to create vectors rep()

For character: rep() can create very long vectors. Works for creating character
and numeric vectors.

The each argument specifies how many of each item you want repeated. The
times argument specifies how many times you want the vector repeated.

rep(WHAT_TO_REPEAT, arguments)

rep(c("black", "white"), each = 3)

[1] "black" "black" "black" "white" "white" "white"

rep(c("black", "white"), times = 3)

[1] "black" "white" "black" "white" "black" "white"

rep(c("black", "white"), each = 2, times = 2)

[1] "black" "black" "white" "white" "black" "black" "white" "white"

38/41

Creating numeric vectors sample()

You can use the sample() function to make a random sequence. The x
argument specifies what you are sampling from. The size argument specifies
how many values there should be. The replace argument specifies if values
should be replaced or not.

seq_hun <- seq(from = 0, to = 100, by = 1)
seq_hun

 [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 [19] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 [37] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 [55] 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 [73] 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 [91] 90 91 92 93 94 95 96 97 98 99 100

y <- sample(x = seq_hun, size = 5, replace = TRUE)
y

[1] 89 69 78 77 13

39/41

Summary

R functions as a calculator

Use <- to save (assign) values to objects

Use c() to combine vectors

length(), class(), and str() tell you information about an object

The sequence seq() function helps you create numeric vectors (from,to, by,
and length.out arguments)

The repeat rep() function helps you create vectors with the each and times
arguments

sample() makes random vectors

·

·

·

·

·

·

·

40/41

Summary

 Class Website

 Basic R Lab

Image by Gerd Altmann from Pixabay

41/41

https://daseh.org/
https://daseh.org/modules/Basic_R/lab/Basic_R_Lab.Rmd
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

